Tuning the properties of 2D magnets by twisting or by molecular strain

E. Coronado
C. Boix-Constant, F. Marqués-Morós, V. Alapatt, S. Mañas-Valero, J. Canet-Ferrer
ICMol. Univ. Valencia, Catedratico Jose Beltran 2, Paterna, Spain
Eugenio.coronado@uv.es

The controlled assembly of 2D materials in van der Waals heterostructures provides the opportunity to design unconventional materials with novel properties. Here I will illustrate this concept through two examples:

1) A twisted 2D heterostructure formed by two ferromagnetic monolayers of CrSBr rotated by an angle of 90° [1]. Magneto-transport measurements in this new material show a multistep spin switching with the opening of hysteresis, which is absent in the pristine bilayer case (angle of 0°) [2], as a consequence of the competition between the inter-layer exchange interactions (which favor an antiparallel orientation of both spin layers) and the local spin anisotropy and an external magnetic field applied along the easy magnetic axis b (which tend to orient the spins along this easy axis).
2) A molecular/2D heterostructure obtained by interfacing a stimuli-responsive spincrossover molecular system with CrSBr layers. We observe that in this hybrid heterostructure the properties of the 2D magnet changes when the molecular spin transition of this molecular component -induced by temperature or light- occurs. This is a consequence of the significant change generated in the volume of the spin crossover material (by ca. 10%) upon the spin transition $[3,4]$. We will show that in this heterostructure the optical properties of CrCBr can be switched by varying the temperature, due to the strain concomitant to the spin transition.

References

[1] C. Boix-Constant et al. arXiv preprint arXiv:2301.05647
[2] C. Boix-Constant et al., Adv. Mater., 34 (2022) 2204940
[3] C. Boix-Constant et al., Adv. Mater., 34 (2022) 2110027
[4] M. Gavara-Edo et al., Adv. Mater., 34 (2022) 2202551

