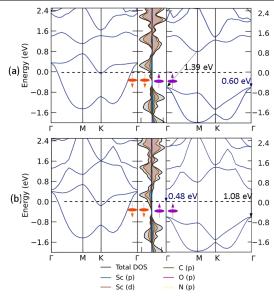
Blanca Biel¹

Sibel Özcan²

¹ Dep. Atomic, Molecular and Nuclear Physics & Instituto Carlos I de Física Teórica y Computacional, Faculty of Science, Campus de Fuente Nueva, University of Granada, 18071 Granada, Spain ² Department of Physics, Aksaray University, 68100 Aksaray, Turkey Biel@ugr.es

Janus MXenes are a class of two-dimensional materials (2D) that exhibit unique structural and chemical properties. They consist of atomically thin layers with a Janus-like structure, meaning that one side of the layer has different chemical elements or functional groups compared to the other side. This structural asymmetry grants them diverse applications, such as energy storage, catalysis, sensing, and electronic devices, making them highly promising in the field of nanotechnology.


I will show how the Sc₂C MXene family seems to be particularly suitable to maximize the performance of nanoelectronic devices in, at least, two different aspects. Through Density Functional Theory calculations, we have explored the mechanical, electronic and magnetic properties of 36 functionalized Sc₂CXT (X = O, F, OH; T = C, N, S) MXenes, revealing interesting aspects such as ferro or anti-ferromagnetism and half-metallicity, depending on the functionalization. On the other hand, the functionalization of Sc₂CX with N₂, ON, or O₂ groups shows competitive performance in terms of Na adsorption, diffusion, and capacity s as anodes for Na-ion batteries (NIBs).

These findings highlight the remarkable potential of Sc₂CX MXenes for various applications in 2D nano-, spin-, and energy-related fields.

References

- [1] B. Anasori et al. ACS Nano 9 (2015) 9507–9516
- [2] S. Özcan and B. Biel, Phys. Chem. Chem. Phys. 25 (2023)1881-1888
- [3] S. Özcan and B. Biel, J. Appl. Phys. 133 (2023) 044301

Figures

Figure 1: Band and spin-resolved density of states structures of (a) Sc₂CFC and (b) Sc₂COHC.

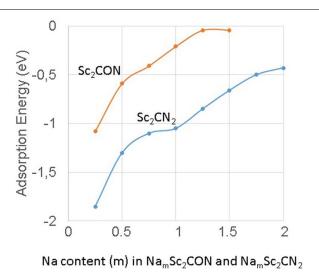


Figure 2: Variation in the adsorption energy with increasing Na content on Sc_2CN_2 and Sc_2CON .