NH$_3$ and PH$_3$ Identification Using Graphene based Gas Sensor

Shirong Huang1
Alexander Croy1, Bergoi Ibarlucea2, Gianaurelio Cuniberti1,2,3

1 Institute for Materials Science and Max Bergmann Center for Biomaterials, TU Dresden, 01062 Dresden, Germany
2 Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden, Germany
3 Dresden Center for Computational Materials Science (DCMS), TU Dresden, 01062 Dresden, Germany

shirong.huang@tu-dresden.de

Abstract
Both NH$_3$ and PH$_3$ are widely used in industrial processes, and yet they are noxious and exhibit detrimental effects on human health. ¹ A variety of gas sensors have been developed to detect and monitor the NH$_3$/PH$_3$ gas in an industrial environment. ²⁻⁴ Despite the remarkable progress of sensors development, there are still some limitations, for instance, the requirement of high working temperature, and the dedication to solely individual gas monitoring. ⁵ Here we develop an ultrasensitive, highly discriminative platform for the detection and identification of NH$_3$ and PH$_3$ at room temperature using a graphene nanosensor. Graphene is exfoliated and successfully functionalized by a copper phthalocyanine derivative (CuPc). In combination with efficient machine learning techniques, the developed graphene nanosensor demonstrates an excellent gas identification performance even at ultralow concentration, 100 ppb NH$_3$ (accuracy-100%, sensitivity-100%, specificity-100%) and 100 ppb PH$_3$ (accuracy-77.8%, sensitivity-75%, and specificity-78.6%), as shown in Figure 1. Molecular dynamics simulation results reveal that the attachment of CuPc on the graphene surface facilitates the adsorption of NH$_3$ owing to hydrogen bonding interactions. This smart-sensor prototype paves a path to design highly discriminative, ultrasensitive, miniaturized, non-dedicated gas sensors towards a wide spectrum of industrious gases.

References

Figures

Figure 1. (a) Sensor response towards 100 ppb analyte gas (NH$_3$, PH$_3$ and N$_2$). (b) Sensor performance metrics towards analyte gas at their 100 ppb concentration using hold-out cross-validation method.