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Zoo of 2D Materials

layered substances with covalent bonding within the 
layers and van der Waals coupling between the layers



Electronic and optical properties     
of 2D (atomically thin) InSe crystals

 band and gaps for mono- and few-layer γ-InSe 
 optical and transport properties (th+exp)
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Monolayer (In2Se2) N-layer In2NSe2N

z→‐z mirror symmetry

broken 
z→‐z mirror 
symmetry

Zolyomi, Drummond, Fal’ko
PRB 89, 205416 (2014)

Monolayers In2S2, Ga2X2 have qualitatively 
very similar properties, but multilayer films 

have different lattice, bands/gaps and 
selection properties for optical transitions)

Zolyomi, Drummond, Fal’ko
PRB 87, 195403 (2013)



DFT bands for monolayer M2X2  

Zolyomi, Drummond, Fal’ko - PRB 87, 195403 (2013);  PRB 89, 205416 (2014)

mc = 0.2me

why InSe

Relatively light 
electrons in conduction 

band: 
good for high mobility

almost flat edge of the 
valence band: 

opportunity to get 
strong correlations in 
hole-doped material

most stable in ambient 
conditions 
bulk γ-InSe 



 Formulate tight binding model with all s and p orbitals and all nearest 
neighbour hoppings (MX, MM, XX) for monolayer (In2Se2) and bulk   

 Fit TB parameters to reproduce DFT bands in monolayer and bulk, 
after implementing a scissor correction to the band gap determined 
by comparing experimental and DFT gap values for bulk γ-InSe 
(1.45eV at low T and 1.25eV at room T)

 Compute spectra of N-layer InSe (In2NSe2N) and matrix elements for  
z- and in-plane polarised optical transition, to compare with the 
experiment
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Tight-binding model and DFT In2Se2 DFT-parametrised tight-binding model for In2NSe2N 

Magorrian, Zólyomi, Fal'ko ‐ PRB 94, 245431 (2016)



Tight-binding model and DFT In2Se2 DFT-parametrised tight-binding model for In2NSe2N 

z→‐z mirror symmetry

antisymmetric (odd)

symmetric (even)
B

VB-CB transition ‘A’ across the gap is 
active in z-polarisation;

a higher-energy transition ‘B’ to a deeper 
double degenerate at the Г-point valence 

band is active in the x-y polarisation

Parametrised TB: Δ=3.1eV
(low T scissor correction)

A



odd/even z -> -z 
conduction/valence 

band states allow for 

spin-flip                  
(due to atomic SO 

coupling) interband
transition coupled with 
in-plane xy-polarised 

photons

Role of spin-orbit coupling in monolayer InSe
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mirror reflection symmetry of  the crystal 
forbids SO coupling in both conduction 
and valence bands, while time-inversion  
and D3h symmetry allow spin-dependent 
terms only in the 3dr order in k.p theory.



4-band k•p theory for monolayer InSe
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Monolayer (In2Se2)

z→‐z 
mirror 

symmetry

Electronic bands in In2NSe2N 

Bilayer (In4Se4)

broken 
mirror 

symmetry

Magorrian, Zólyomi, Fal'ko ‐ PRB 94, 245431 (2016)



Relatively light electrons CB and wide interval of              
an almost flat VB edge also appear in few-layer InSe

large variation of the 
band gap as a function 

of number of layers.Magorrian, Zólyomi, Fal'ko ‐ PRB 94, 245431 (2016)

Electronic bands in In2NSe2N 

room T scissor correction



z ‐z antisymmetric
symmetric

Optical transitions in In2NSe2N

Magorrian, Zólyomi, Fal'ko ‐ PRB 94, 245431 (2016)

transition A (z-polarised) 

xy-polarised transition B

broken 
z→-z mirror 

symmetry

transition A 
xy-plane polarised 
with SO-induced 

spin-flip



hBN‐encapsulated In2NSe2N

hBN is sp2 – bonded 
insulator with a 
large band gap  
it is transparent and 

takes high voltage 
drop (useful for 
electrostatic gating)

 hBN and 2DM are glued together by weak van der Waals attraction, 
hence, they preserve their lattice structure and, hence, retain their 
basic physical properties.

hBN insulator

 hBN provides atomically flat substrate and clean encapsulation 
environment (low-resistance side contacts are possible) 

hBN insulator

active 2DM



hBN‐encapsulated In2NSe2N

 hBN and 2DM are glued together by weak van der Waals attraction, 
hence, they preserve their lattice structures and, hence, retain their 
basic physical properties.

 hBN provides atomically flat substrate and clean encapsulation 
environment (low-resistance side contacts are possible) 

high mobility!



hBN‐encapsulated 2D crystal: QHE in 6L‐InSe

mc(N=3)=0.17me
mc(N=6)=0.14me



Bandurin, Tyurnina, Yu, Mishchenko, Zólyomi, Morozov, Krishna Kumar, Gorbachev, Kudrynskyi
Pezzini, Kovalyuk, Zeitler, Novoselov, Patanè, Eaves, Grigorieva, Fal’ko, Geim, Cao

DFT/TB with scissor correction



Magnetoluminescence (non‐encapsulated 5L) 

Mudd, Molas, Chen, Zolyomi, Nogajewski, Kudrynskyi, Kovalyuk, Yusa, Makarovsky, 
Eaves, Potemski, Fal’ko, Patane - Scientific Reports 6, 39619 (2016)

mc=0.14me



Two-dimensional InSe 
 strong band gap variation with the number of layers
 light conduction band mass: 

potential for high mobility and quantum circuits
 potential for strongly correlated states                        

in p-doped 2D InSe

P-doped:          Wigner crystal?    
Mott insulator?      ferromagnetic state?
Peierls instability?   superconductivity?
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