THALES

Graphene based supercapacitors: results perspectives and potential industrial implementation

Paolo Bondavalli, PhD, HdR In charge of transversal topic Nanomaterials Thales Research and Technology

(

The Thales Group

Thalesgroup

Collective intelligence for a safer world

Whenever critical decisions need to be made, Thales has a role to play. In all its markets - aeronautics, space, ground transportation, defence and security - Thales solutions help customers to make the right decisions at the right time and act accordingly.

World-class technology, the combined expertise of 61,000 employees and operations in 56 countries have made Thales a key player in keeping the public safe and secure, guarding vital infrastructure and protecting the national security interests of countries around the globe.

Employees
61,000
(workforce under management at 31 Dec. 2014)

A balanced revenue structure
Defence 55%

Revenues in 2014
13 billion euros

Global presence 56 countries

Shar (at 31)

Research and

development2.5 billion euros

(approx. 20% of revenues)

THALES

THALES GROUP INTERNAL

Thales Research & Technology

An international network of research laboratories ...

Excellence

External recognition ~500 researchers ~200 PhDs

Partnerships

Common laboratories
Labs located close to / on campuses

High visibility

Strongly present within national & European R&D networks

... strongly contributing to the overall competitiveness and attractiveness of the Group

France

Palaiseau

UK

Reading

Netherlands

Delft

Singapore

Canada

Quebec

THALES GROUP INTERNAL

A global player

THALES RESEARCH & TECHNOLOGY France (Palaiseau)

This document may not be reproduced, modified, adapted, popart or disclosed to a third party without the prior written conse

THALES GROUP INTERNAL THALES

Mission

- > THALES Research & Technologies is a portal for emerging technologies into THALES Group
- > Open organisation, co-located close to or within some of the best research campus in our fields, according to the Group worldwide map of locations
 - France (Palaiseau): 350 p + 70 PhD + 80 CNRS-Universities
 - Ecole Polytechnique Plateau de Saclay
 - UK (Reading): 130 p
 - University of Surrey
 - Netherlands (Delft): 15 p
 - Technological University of Delft University of Twente
 - Singapore: 15 p
 - Nanyang Technical University

The actors of research

TRT

THE JOINT LABS

INNOVATION PLATFORMS

Work on concrete cases of technology implementation in the products of the group.

DIVISIONS

TRT

ACADEMICS JOINT LABS

Those common labs have common personnel, common equipment and shared research agenda

ACADEMICS CNRS-Ecole Polytechnique.

TRT

INDUSTRIAL JOINT LABS

Those common labs have common personnel, common equipment and shared research agenda

INDUSTRIALS ALCATEL

d, adapted, published, translated, in any way, in whole or in r written consent of Thales - © Thales 2015 All rights reserved.

What's a supercapacitor?

March 2015 Template: 87204467-DOC-GRP-EN-002

Advantages

Very high rates of charge and discharge

Higher life cycle (>500000, rechargeable batteries can attain 10000)

Good reversibility

Low toxicity of material used

High cycle efficiency

Low internal resistance (Higher output power)

Extremely low heating levels

Drawbacks

Low amount of energy stored (3-5 Wh/Kg vs 30-40 Wh/Kg for batteries) It requires sophisticated control and switching equipment

(from batteries to supercaps)

Some visible supercap applications

Activated carbon: parameters

Main parameters

- Surface (energy)
- High breakdown voltage (energy)
- Pore size (to exploit surface completely and to promote easy ion diffusion)

Activated Carbon

- Large surfaces (3000m²/g)
- Low-cost material

Non-faradic carbon nanotubes based supercapacitors: state of the art, **P.Bondavalli**, et al., Eur. Phys. J. Appl. Phys. 60,10401, 2012

Fig. 1. (a) Schematic of an activated carbon-based EDLC. (b) Representation of pore in carbon electrode active layer

The main issue:

Very bad mesoporous distribution!!!
2/3 of the pore size are smaller than 2 nm and so are unpercolated)

March 2015 Template: 87204467-DOC-GRP-EN-002

2/3 of the surface is not exploited

PORE SIZE IS NOT OPTIMIZED AND SURFACE IS NOT ADEQUATELY EXPLOITED

March 2015

Template: 87204467-DOC-GRP-EN-002

Why to use Graphene related materials and CNTs mixings?

CNT/graphene/graphite composite

U. Khan, J. N. Coleman et al Carbon (2010)

Resistance is reduced by a factor of 4 compared to bare CNTs layers

Can we improve the Power output ($P \propto 1/R$)?

0% Graphite B) 50% Graphite 2 um C) 85% Graphite 0) 95% Graphite 200 nm

19

Research & Technology

Why to use Graphene related materials and CNTs mixings?

Pristine graphene/graphite

Graphene/graphite/CNTs mixing

- CNTs prevent restacking (higher surface, higher energy stored)
- CNTs/graphite/graphene improve conduction (higher power delivered)
- CNTs prevent the disintegration of the composite

THALES GROUP INTERNAL

Thales approach and strategy: technological differentiators

Template: 87204467-DOC-GRP-EN-002

Final sonication of the mixture: 18h low power

THALES GROUP INTERNAL

Deposition method

- Excellent reproducibility
- Versatile, easily scalable for large-area applications
- Extremely uniform deposition with no "coffee-ring" effect

Process patented

23

March 2015 Template: 872044

Sample Morphology (cross section)

Supercapacitor electrode based on mixtures of graphite and carbon nanotubes deposited using a new dynamic air-brush deposition technique, P Bondavalli, JECS 160 (4) A1-A6, 2013

Research & Technology

Electrode design and cell fabrication

Supercapacitor electrode based on mixtures of graphite and carbon nanotubes deposited using a new dynamic air-brush deposition technique, **P Bondavalli**, JECS 160 (4) A1-A6, 2013

SAir-brush deposition

Gun spraying

Masking

Several samples fabricated at the same time

Panasonic
Graphite bucky paper

Flexible electrodes

Electrode design

Supercapacitor Cell

his do

THALES GROUP INTERNAL

Results: Energy and Power as a function of the concentration

Sample characteristics:

- weight = 1.8mg
- surface = 2cm² (circular design)
- thickness ~ 20µm

A - Influence of the CNT concentration (Electrodes)

- Energy max. ~4,5Wh/kg for 75wt%CNT
- Power max. ~15 kW/kg for 25wt%CNT (enhancement of 2,5)

Supercapacitor electrode based on mixtures of graphite and carbon nanotubes deposited using a new dynamic air-brush deposition technique, **P Bondavalli**, JECS 160 (4) A1-A6, 2013

Last measurements: new option for green suspensions using GO

Mixing of Graphene Oxyde and Oxydised Carbon Nanotubes in water

Advantages

- Aqueous based supensions
- Very stable suspensions
- Low temperature process (120°C)

New packaged prototypes

March 2

Performances for different GO concentrations

Power density

30 %

March 2015 Template: 87204467-DOC-GRP-EN-002

Power density:

100 % GO : 14 kW/kg 90/10 : 31 kW/kg 80/20 : 29 kW/kg 70/30 : 21 kW/kg

Graphene from IIT : Galvanostatic charge/discharge experiment

WILEY-VCH **FULL PAPER**

High-power graphene-carbon nanotube hybrid supercapacitors

Alberto Ansaldo, [a] Paolo Bondavalli, [b] Sebastiano Bellani, [a] Antonio Esau Del Rio Castillo, [a] Mirko Prato, [c] Vittorio Pellegrini, [a] Grégory Pognon, [b] and Francesco Bonaccorso*[a]

Thanks to strong collaboration with IIT

THALES GROUP INTERNAL

Graphene Oxide based electrodes

Advantages

- Water based suspensions
- Low cost material
- Very stable suspensions (months, years?)
- Capacitance of 120F/g, Power density of 30kW/Kg

Drawbacks

Power lower than for Graphene (factor three)

Graphene based electrodes

Advantages

Same capacitance that GO but Larger power density demonstrated (~100kW/Kg)

Drawbacks

- NMP based suspensions (toxic and higher boiling temperature than water)
 - Stability of the suspensions (weeks?)

De document et les informations qu'il contient sont la proparans son autorisation écrite au préalable. 9THALES 2008. Modèle trip version 7.0.6

Last developments on nanostructuration

ocument et les informations qu'il contient sont la propriété de THALES. Ils ne per son autorisation écrite au préalable.

Utilisation of specific ionic liquids: large temperature interval for avionics (-55°C +105°C)

90/10 Cyclohexanone

THALES GROUP INTERNAL

36

March 2015 Template: 87204467-DOC-GRP-EN-002

90/10 Dichloroethane (rGO/CNFs)

90/10 rGO/CNF two nozzles, C₂H₄Cl₂

THALES GROUP CONFIDENTIEL

75/25 GO/CNFox

Graphene related nanomaterials based Supercapacitors

Considering that supercapacitors bridge the gap of capacitors and batteries performances we have to attain performances in this zone

THALES

Thales approach and strategy

Thales approach and strategy

Deposition method evolution

CNT solution reservor Spray-gun

2008
Spray-gun robot
with one nozzle

2016
Spray-gun robot with two nozzles

2017
Spray-gun robot
with four nozzles
pre-industrialized
(M-Solv)

Semi-automatic

SMALL SURFACES MANUAL SYSTEM

LARGE SURFACES
COMPLETELY AUTOMATISED
SYSTEM
(pre-industrial prototype)

Roll to Roll Core 2 (2020) Pilot Production line using Spray

- Scale up deposition further
- Fastest deposition method would have a substrate moving perpendicular to a bank of nozzles
- Faster flow rates could be investigated using higher volume spray heads. May allow deposition of a complete film in one pass

Achievable Flow Rates with Different

Disclosed to Thales for Graphene Flagship

M-Solv Limited – 2nd December 2016

M-SOLV

Value Chain

Thales operational units express needs and provide specs to attain

Technology developer and provider of the group

Technology moves from TRL1 to TRL4/5

will identify the technical partners to transfer the technology outside the Thales group (technology licensing)

Exclusivity contract for production of subsystems for Thales

Large surface machine developer and provider M-SOLV

Integration in production line (Start-up/Spin off/Joint venture)

Company producing Supercaps not only for Thales but also for mass-market low-cost applications THALES GROUP INTERNAL

Conclusions and perspectives

- Supercaps can be fabricated by spray-gun deposition method exploiting nanostructuration.
- The results are compatible with commercial products but SCs can stay between -50°C and 105°C (no companies are able to do that).
- We are improving nanostructuration for ionic liquinds (to increase energy keeping the same lifetime).
- Supercaps will be fabricated by roll-to-roll in two years in the frame of the Graphene Flagship (graphene and CNFs seem to be the good option). We are looking for partners for manufacturing (some options)

Fundings

Work Package 9: Energy

Work Package Leader - Dr. Etienne Quesnel, CEA French Alternative Energies and Atomic Energy Commission, France Work Package Leader - Dr. Vittorio Pellegrini, Italian Institute of Technology, IIT graphene labs, Italy

The FIBRALSPEC project is supported by the European Commission under the 7th Framework Programme and will run for 48 months from January 2014 to December 2017.

Project coordinator: Costas A. Charitidis

THALES GROUP INTERNAL

- High-power graphene-carbon nanotube hybrid supercapacitors. ChemNanoMat. Accepted Author Manuscript. Ansaldo, A., Bondavalli, P., Bellani, S., Del Rio Castillo, A. E., Prato, M., Pellegrini, V., Pognon, G. and Bonaccorso, F. (2017), doi:10.1002/cnma.201700093
- <u>Graphene-based technologies for energy applications, challenges and perspectives,</u> Etienne Quesnel, Frédéric Roux, **Paolo Bondavalli** et al., 2D Materials 08/2015; 2(3):030204.
- Supercapacitor electrode based on mixtures of graphite and carbon nanotubes deposited using a new dynamic air-brush deposition technique, P Bondavalli, C.Delfaure, P.Legagneux, D.Pribat JECS 160 (4) A1-A6, 2013
- Non-faradic carbon nanotubes based supercapacitors: state of the art, P.Bondavalli, D.Pribat, C.Delfaure, P.Legagneux, L.Baraton, L.Gorintin, J-P. Schnell, Eur. Phys. J. Appl. Phys. 60,10401, 2012
- Graphene based supercapacitors fabricated using a new dynamic spray-gun deposition technique, P. Bondavalli and G. Pognon, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), Rome, 2015, pp. 564-567.
- Graphene and Related Nanomaterials 1st Edition, Properties and Applications, Paolo Bondavalli, Hardcover ISBN: 9780323481014, Elsevier, Published Date: 1st September 2017

THALES GROUP INTERNAL

- WO/2016/124756 (A1) **Method of depositing oxidized carbon-based microparticles and nanoparticles,** Pognon Grégory [fr]; Bondavalli Paolo [fr]; Galindo Christophe [fr]
- WO/2014/166952 (A1) Electrode-gel electrolyte assembly comprising a porous carbon material and obtained by radical polymerisation, Le Barny, Pierre; (FR). Divay, Laurent; (FR). Galindo, Christophe; (FR)
- FR2988900 (A1) Electrode pour supercondensateur, Christophe Galindo, Laurent Divay, Le Barny Pierre
- FR2989215 (A1) Electrode hybride pour supercondensateur, , Le Barny Pierre , Laurent Divay. Christophe Galindo
- FR2989821 (A1) Electrode hybride nanotubes de carbone-carbonne mesoporeux pour supercondensateur, Le <u>Barny Pierre</u>, Laurent Divay, Christophe Galindo
- FR3011671 (A1) Collecteur de courant pour supercapacite, Bondavalli Paolo [fr]; Legagneux Pierre [fr]; Galindo Christophe
- WO2012049428 (A2) **Method for depositing nanoparticles on a surface and corresponding nanoparticle depositing appliance**, Bondavalli Paolo [fr]; Gorintin Louis [fr]; Legagneux Pierre [fr]; Ponard Pascal [fr]
- FR2976118 (A1) Method for manufacturing collector-electrode assembly that is utilized in supercapacitor, involves forming collector and electrode by spraying suspension comprising nano/microparticles suspended in liquid in substrate, Bondavalli Paolo [fr]; Schnell Jean Philippe [fr]; Legagneux Pierre [fr]; Gorintin Louis [fr]
- EP2769395 (A1) Collector-electrode assembly which can be integrated into an electrical energy storage device, Legagneux Pierre [fr]; Bergonzo Philippe [fr]; Bondavalli Paolo [fr]; Mazellier Jean-Paul [fr]; Scorsone Emmanuel [fr]

THALES

Thanks to

In the frame of the Graphene Flagship IIT Genova

- Francesco Bonaccorso,
- Alberto Ansaldo,
- Sebastiano Bellani.
- Antonio Esau Del Rio Castillo
- Mirko Prato
- Vittorio Pellegrini.
- Graphenea for GO in water
 - A.Zurutuza
 - I.Charola
- Gregory Pognon (Chemistry Lab) Electrochemical characterization

and nanomaterial functionalisation

Thank you for your attention!!!

