Dirac and Weyl Fermions in Strained Grey-Sn films on Hybrid CdTe/GaAs (001) Substrate

V.V. Volobuev^{1,2}

J. Polaczyński¹, G. Krizman³, A. Kazakov¹, B. Turowski¹, J. Bermejo-Ortiz³, R. Rudniewski¹, T. Wojciechowski¹, P. Dłużewski⁴, M. Aleszkiewicz⁴, W. Zaleszczyk¹, B. Kurowska⁴, Z. Muhammad¹, M. Rosmus⁵, N. Olszowska⁵, L.-A. de Vaulchier³, Y. Guldner³, T. Wojtowicz¹

¹International MagTop, Research Centre Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland Technical "KhPI". ²National University Kyrpychova Str. 2, 61002 Kharkiv, Ukraine ³Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, 24 rue Lhomond, 75005 Paris, France ⁴Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland Centrum Promieniowania ⁵Narodowe Synchrotronowego SOLARIS, Uniwersytet Jagielloński, ul. Czerwone Maki 98, 30-392

volobuiev@magTop.ifpan.edu.pl

Kraków, Poland

Grey-tin (a-Sn), the low-temperature allotrope of tin with a diamond structure, is a promising platform for exploring topological phases and applications in quantum technologies [1]. However, conventional narrow-gap InSb substrates, commonly used to stabilize a-Sn at room temperature, introduce parallel conduction effects that hinder detailed transport studies and limit practical applications.

This study overcomes above-mentioned challenges by achieving the MBE growth of high-quality a-Sn films, with thickness ranging from 30 to 200 nm, on insulatina CdTe/GaAs(001) substrates. The structural and morphological investigations reveal the formation of a smooth coherent Sn/CdTe interface and the stability of diamond structure of tin at 300 K. Compressive inplane strain of ε_{\parallel} = -0.14 % is detected enabling further investigations of straininduced 3D Dirac semimetal (DSM) and magnetic field-induced Weyl semimetal (WSM) phases. A combined approach of

magneto-optical experiments and band structure k p modeling provides a detailed characterization of the bulk states in the DSM phase. Key band structure parameters, such as the inverted energy gap ($E_q = -415$ meV) and the distance between two Dirpac $= 0.018 \text{ Å}^{-1}$), (⊿k_D have been points determined. Angle-resolved photoemission spectroscopy (ARPES) further confirms the presence of both bulk and surface states associated with the DSM phase. Additionally, these films exhibit high bulk electron mobility, reaching $20,000 \text{ cm}^2/(\text{V} \cdot \text{s})$, creating favorable conditions for exploring quantum transport. The study also investigates negative longitudinal magnetoresistance, linking it to the chiral anomaly—a hallmark of WSMs. The π Berry phase observed in Shubnikov-de Haas oscillations further supports the material's non-trivial topology [2]. These findings establish a-Sn films on insulating substrates as a robust platform for studying relativistic effects and advancing topological and spintronic devices.

References

- [1] L.D. Anh, K. Ishihara, et al., Nat. Commun. 15 (2024) 8014
- [2] X J. Polaczyński, G. Krizman, et al., Materials Today 75 (2024) 135

Figures Weyl semimetal Dirac semimetal 0.3 K 0.0 30 K -0.1 ° -10 77 K (eV) -0.2 R MR -20 ц Ц -0.3 -30 -0.4 -40+ 0 -0.5 k_{||} (Å⁻¹) 0.0 15 -0.2 5 10 B (T)

Figure 1: DSM and WSM phases measured by ARPES and observed by magneto-transport respectively

QUANTUMatter2025