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Direct Wigner function (WF) measurement 

[1] based on photon-number counting is a 

sensitive method to characterize 

continuous-variable resource states in the 

discrete variables context. This method is 

based on direct photon-number 

measurement after quantum interference 

of the target state with a weak laser. In 

contrast to the more established 

homodyne measurement [2], the direct 

measurement enables to quantify the 

displacement and distinguish it from optical 

loss. This displacement together with a 

precise characterization of optical losses is 

essential to reconstruct the WF, as 

pioneered with heralded single photons [3]. 

We use a deterministic true single-photon 

source based on a semiconductor 

quantum dot (QD) device [4] to improve 

the direct WF reconstruction precision and 

its resource demand. First, we demonstrate 

efficient homodyne photon-correlation 

techniques to optimize the mode-matching 

of the local oscillator to the single-photon 

wavepacket based on monitoring the 

photon bunching. By tailoring laser light in 

different degrees of freedom, we maximize 

the overlap up to 77% [5]. This represents a 

record value reported with semiconductor-

QD sources, slightly limited by the mismatch 

between the temporal profile of the two 

fields and the low-frequency charge noise 

of the single-photon source. 

Second, in Fig. 1, we compare two different 

acquisition methods to reconstruct the 

target-state photon-number distribution by 

either from pseudo-photon number 

resolving (PPNR) detection with four 

parallelized detectors or zero-photon (ZP) 

detection probability under controlled and 

calibrated attenuation derived from single-

detector clicks [6]. After optical loss and 

mode-matching corrections of the 

measured signal, we, for the first time, 

reconstruct the single-photon WF. The 

maximum-likelihood Wigner reconstruction 

fed with the ZP dataset enables retrieval of 

the expected WF, even up to relatively high 

displacement, where the PPNR method fails 

for limited photon-number resolution [3] 

despite using three more detectors. Even 

under demultiplexing into more detectors, 

the precision of the PPNR-based WF 

reconstruction remains limited due to the 

exponentially longer acquisition time of 

higher-order correlations. 
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Figure 1: Comparison of reconstructed single-

photon WF.  

mailto:hubert.lam@cnrs.fr

