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Over the last decade, considerable efforts 

have been devoted to extending 

topological band theory to photonic 

systems in order to enable transformative 

applications across a broad range of 

applications, ranging from optical isolation 

and light emission (lasers, frequency combs, 

quantum light sources…) to signal 

processing and quantum computing [1]. 

 

So far, most of the experimental realizations 

in the field of topological photonics rely on 

time-reversal symmetric (T) models, notably 

inspired by the spin- and valley-Hall effect, 

because these can be easily implemented 

in passive platforms, e.g. photonic crystals, 

and arrays of waveguides or resonators. 

However, photon transport in these 

architectures is critically prone to back-

scattering, because Kramers’ degeneracy 

theorem which precludes the hybridization 

of counter-propagating electrons in T-

invariant topological matter doesn’t apply 

to bosonic fields. 

 

I will present a recent work [2] in which we 

directly overcome this fundamental 

challenge by realizing a photonic Chern 

insulator – a topological insulator with 

broken T – by implementing the Haldane 

model [3] in the synthetic frequency 

dimension of an optical fibre loop platform. 

The breaking of time-reversal and the 

complete control of inter-site connectivity is 

ensured through electro-optic modulation. 

Thanks to the versatility and driven-

dissipative nature of our platform, we 

realize a full characterization of the bands’ 

topological properties, including the band 

structure (Fig. 1a), and Berry curvature with 

the corresponding Chern numbers. We 

finally extract a drive-dissipative analogue 

of the quantum anomalous Hall drift in 

frequency space (Fig. 1b) upon 

implementing an effective electric field. 

 

These results pave the way to robustly 

engineering the flow of light in frequency-

multiplexed photonic devices, including 

frequency combs, quantum sensors, optical 

neural networks and photonic quantum 

processors. 
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Figure 1: (a) Band structure in the Haldane 

phase. (b) Transvers Hall drift (and associated 

Chern number) as a function of laser detuning. 


