High-fidelity gates and readout for superconducting quantum processors

Yasunobu Nakamura

RIKEN Center for Quantum Computing, Wako, Saitama, Japan

Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan

yasunobu@ap.t.u-tokyo.ac.jp

Quantum computing demands an unprecedentedly high level of precision in the control and readout of quantum states encoding quantum information in a large Hilbert space. Therefore, in parallel with the pursuit of scalability, persistent efforts have been made to improve control and qubits. readout fidelities of We are developing two-dimensionally integrated superconducting qubit arrays for quantum computing. In our architecture, unit cells consisting of four aubits and a four-foldmultiplexed readout port are tiled to produce a larger array. The control and readout signals are delivered vertically from the backside of the chip. This talk will also approaches toward fast cover our multiplexed gubit readout [1] and fast twoqubit gates using a tunable coupler between fixed-frequency qubits [2]. The fidelities above 99.9% have been reached, and further improvements are awaited.

References

[1] P. A. Spring *et al.*, arXiv:2409.04967.
[2] R. Li *et al.*, Phys. Rev. X 14, 041050 (2024).

Figures

Figure 1: Picture of a 64-qubit superconducting quantum processor chip

Figure 2: False-color image of a two-qubit chip for the demonstration of a high-fidelity CZ gate with a douple-transmon coupler [2].