Heralding of a single spin via giant polarization rotations in a QD-based spin-photon interface

Adrià Medeiros Garay¹

V. Vinel¹, E. Mehdi¹, M. Gundín¹, C. Millet¹, N. Somaschi², A. Lemaître¹, I. Sagnes¹, O. Krebs¹, D.A. Fioretto¹, P. Senellart¹ and L. Lanco^{1,3}

¹Université Paris Saclay, C2N, CNRS, 91120, Palaiseau, France ²Quandela SAS, 10 Bd Thomas Gobert, 91120, Palaiseau, France ³Université Paris Cité, 75013, Paris, France

adria.medeiros@cnrs.fr

Charged InAs/GaAs guantum dots (QD) are promising candidates for quantum information processing. Entangling the spin degree of freedom of a charge confined in the QD and the polarization of sinale would incoming photons allow implementing deterministic spin-photon and photon-photon quantum gates. A promising strategy for this is to take advantage of the giant polarization rotations induced by a single spin, as in micropillar cavity-based spin-photon interfaces^{1,2}.

In our work, we use high-quality QD-based cavity devices (Fig. 1) to produce spindependent reflected polarization states $|\Psi_{\uparrow}\rangle$ and $|\Psi_{\downarrow}\rangle$. We demonstrate the orthogonality between these two states $(\langle\Psi_{\uparrow} | \Psi_{\downarrow}\rangle=0)$, by showing that the detection of a single reflected photon with polarization $|\Psi_{\uparrow}\rangle$ projects the spin into the $|\uparrow\rangle$ state with 96% fidelity. We perform the polarization tomography of a second photon arriving at a later time before spin relaxation occurs. This allows visualizing the states $|\Psi_{\uparrow}\rangle$ and $|\Psi_{\downarrow}\rangle$ in the Poincaré sphere, where they are shown to be opposite (Fig. 2).

This orthogonality between $|\Psi_1\rangle$ and $|\Psi_1\rangle$ is crucial to allow producing novel maximally entangled states of the form $1/\sqrt{2}(|\Psi\uparrow,\uparrow\rangle+|\Psi\downarrow,\downarrow\rangle)$, between the electronic spin and an incoming photon.

References

- [1] E. Mehdi et al, Nature Communications **15**, 598 (2024)
- [2] M. Gundín et al, PRL **134**,036902 (2025)

Figure 1: Device under study and principle of the spin-dependent polarization rotation.

Figure 2: Experimentally measured $|\Psi_1\rangle$ and $|\Psi_1\rangle$ states in the Poincaré sphere, measured through the tomography of the second reflected photon, as a function of the time delay after the spin projection by a first photon.