ZX-diagrams as a Graphical Diagnose of Topological Order

Sergi Mas Mendoza¹

Richard D. P. East² Michele Filippone³ Adolfo G. Grushin¹

¹Univ. Grenoble Alpes, Grenoble INP, Institut Neel, CNRS, Grenoble, France ²Haiqu, Inc., San Francisco, USA ³Univ. Grenoble Alpes, CEA, IRIG-MEM-LSim, Grenoble, France

sergi.mas-mendoza@neel.cnrs.fr

Abstract

The topological entanglement entropy y [1,2] of a system's bipartition (A,B), as in Fig.1, is a key diagnostic of the type of topological order, as it measures long-range entanglement. However, y is not universal [3,4]. For example, cluster states, which should be trivial ($\gamma = 0$), can have $\gamma > 0$ [5]. In addition, γ can be computationally expensive to obtain. In this work, we introduce a new characterization of topological order, which helps to circumvent practical and non-universal issues in computing The γ. boundary-reduced density matrix $\rho_{\partial A}$ is a reduced density matrix that keeps the relevant degrees of freedom at the boundary of the bipartition. When simplified as a ZX diagram, as we show in Fig.2, it has an invariant number of nonlocal nodes which matches with y. We have observed consistent results, which we show in Fig.2, for the toric code ($\gamma = 1$), the hexagonal toric code ($\gamma = 1$), the color code ($\gamma = 2$) and cluster states with $\gamma > 0$.

References

[1] Alexei Kitaev and John Preskill, Phys. Rev. Lett. 96(11), 110404 (2006).

[2] Michael Levin, Xiao-Gang Wen, Phys. Rev. Lett. 96(11), 110405 (2006).

[3] Yi Zhang, et al, Phys. Rev. B, 85(23), 235151 (2012).

[4] Isaac H. Kim, et al, Phys. Rev. Lett. 131(16), 166601 (2023).

[5] Dominic J. Williamson, et al, Phys. Rev. Lett. 122, 140506 (2019).

Figures

Figure 1: Bipartition of a system into two regions A and B with a boundary ∂A .

Figure 2: The boundary-reduced density matrix $\rho_{\partial A}$ as ZX diagrams for (a) toric codes, (b) color code, and (c) cluster state. The horizontal lines are the boundary degrees of freedom. The green nodes connect nonlocally to the red nodes, a signature of long-range entanglement, and its number is an invariant that characterizes the type of topological order, since it matches with γ .