## Wigner function Reconstruction of Non-Gaussian Superposition States emitted from a Quantum Dot

## Hubert LAM<sup>1</sup>

Petr Steindl<sup>1</sup>, Juan Alvarez<sup>1</sup>, Kiarn Laverick<sup>2</sup>, Yann Portella<sup>1</sup>, Ilse Maillette de Buy Wenniger<sup>3</sup>, Stephen Wein<sup>4</sup>, Anton Pishchagin<sup>4</sup>, Thi-Huong Au<sup>4</sup>, Sebastien Boissier<sup>4</sup>, Aristide Lemaitre<sup>1</sup>, Nadia Belabas<sup>1</sup>, Dario Fioretto<sup>1,4</sup>, Wolfgang Löffler<sup>5</sup>, Alexia Auffèves<sup>2</sup>, Pascale Senellart<sup>1</sup>

<sup>1</sup>C2N, Photonics Department, 10 Bd Thomas Gobert, 91120 Palaiseau, France

<sup>2</sup>Majulab, University of Singapore, Singapore 117543

<sup>3</sup>Imperial College London, Quantum Optics and Laser Science, Exhibition Rd, London SW72BX, UK <sup>4</sup>Quandela, 7 Rue Léonard de Vinci, 91300 Massy, France

<sup>5</sup>Leiden Institute of Physics, Leiden University, 2333 CA Leiden, The Netherlands hubert.lam@cnrs.fr

Semiconductor quantum dot (QD) devices are forefront and versatile quantum light sources that exhibit high in-fiber singlephoton brightness [1], strong single-photon nonlinearities [2], and controllable photonnumber superpositions [3]. These assets position QD as promising light sources for continuous-variable quantum information processing. In this framework, homodyne detection is a crucial technique to measure the Wigner function (WF), a complete quantum state description. We demonstrate the reconstruction of the non-Gaussian WFs for coherent photon-number  $\sqrt{p_0}|0\rangle + e^{i\varphi}\sqrt{1-p_0}|1\rangle$ superposition states emitted from our QD system using a variation of the direct probing method [4]. Instead of photon counting, we rely on a maximum likelihood algorithm to approximate the desired photon-number distribution from zero-photon probabilities  $Z_{0,k}$  measured at k detection efficiencies  $\eta_k$ [5]. The probabilities  $Z_{0,k}$  are extracted from superconducting nanowire single-photon detector rates, with detection efficiency  $n_k$ adjusted via an optical attenuator. Phasespace points are explored by displacing the WF via interference with a weak coherent state on a beam splitter. The amount of displacement  $|\gamma|$  is controlled by tuning the amplitude of the coherent state. A fiber stretcher modulates the

relative phase with a 50 Hz sine wave, leveraging the oscillatory detector rates to extract nine phases  $\Delta \phi_{\rm p}$  by binning. The method's accuracy depends on optical transmission (~6.5 %) - corrected in postprocessing via binomial loss modeling - and optimal mean wavepacket overlaps M between classical and quantum light [4]. We developed two photon-correlation methods leveraging bunching to monitor and optimize  $M = 0.68 \pm 0.03$  [6]. Additionally, maximum likelihood the algorithm requires precise knowledge about desired distributions described by  $\eta_k$ ,  $|\gamma|$ ,  $\Delta \phi_{\rm p}$ , M, and  $p_0$ , which are measured independently. demonstrate We the Wigner negativity in our loss-corrected WF of  $\sqrt{p_0}|0\rangle + e^{i\varphi}\sqrt{1-p_0}|1\rangle$  with  $p_0 = 0.53 \pm 0.01$ (Fig. 1). In total, we acquire six non-Gaussian Wigner functions, demonstrating the method's robustness and the first WF measurements from QD sources.

## References

- [1] Ding, Xing, et al. arXiv preprint, arXiv:2311.08347 (2023).
- [2] De Santis, Lorenzo, et al. Nature nanotechnology 12.7 (2017): 663-667.
- [3] Loredo, J. C., et al. Nature Photonics 13.11 (2019): 803-808.
- [4] Laiho, Kaisa, et al. Physical review letters 105.25 (2010): 253603.
- [5] Allevi, Alessia, et al. Physical Review A 80.2 (2009): 022114.
- [6] Lam, H, et al. In preparation.



Figure 1: Reconstructed WF with an averaged approximation error of  $\varepsilon = (0.36\pm0.25)$  % and acquisition time  $\approx 30$  min.

QUANTUMatter2025