Exact voltage pulse engineering for the collective unitary control of semiconductor quantum dot spin qubit processors

Bohdan Khromets

Zach D. Merino, and Jonathan Baugh

Institute for Quantum Computing, University of Waterloo, 200 University Ave W, Waterloo, ON, Canada

bohdan.khromets@uwaterloo.ca

We present a method of voltage pulse design for the optimal control of spin qubits in a linear array of quantum dots (Fig. 1). Voltage pulses are reverse-engineered from the voltage-dependent spin Hamiltonian parameters: g-factor deviations $\delta g_i(V, W)$ and exchange couplings $J_i(V, W)$, when their pulse shapes S(t) are constrained to ensure time-ordered evolution [2]. We show that a single numerical integration of a system of ODEs of type d[V, W]/dS = F(V, W) enables one to reconstruct voltage pulses $V_i(S(t))$, $W_i(S(t))$ for any shape function chosen for the spin Hamiltonian controls. The procedure yields pulses for single-qubit rotations in the global ESR field, SWAP^{k/2}, or Control-Phase gates, with theoretically perfect unitary fidelities. Additionally, we develop strategies to reduce the number of necessary voltage controls such as using a frequencymodulated rotating frame. The controls shown in Fig. 2 demonstrate simultaneous multi-gubit operations while holding tunneling gate voltages fixed. These approaches open a pathway to simplifying experimental devices without compromising their controllability.

References

- Buonacorsi, Brandon, et al. Quantum Science and Technology 4.2 (2019) 025003.
- [2] Khromets, Bohdan, Zach D. Merino, and Jonathan Baugh. arXiv:2402.08146 (2024).

Figures

Figure 1: Schematic of a spin qubit computational node of a network architecture proposed in [1]. The plunger gate voltages V_{1-4} (golden) accumulate electrons in the electrostatic potential wells (green), and the tunnelling gate voltages W_{1-3} (silver) control the tunnelling barriers. All spins are coupled to the global Zeeman and RF magnetic fields (blue) for electron spin resonance (ESR). Quantum logic operations on many-electron states (purple) are realized through the combined control of ESR magnetic field and voltagedependent g-factors and exchange couplings.

Figure 2: Voltage pulses realizing simultaneous Control-Z operations on 4 qubits from Fig. 1 with no explicit tunnel barrier control ($W_{1-3} \equiv 0$), designed in a frequency-modulated rotating frame. The unitary fidelity of such an operation can be made arbitrarily close to 1 by increasing the precision of the ODE solver.

QUANTUMatter2025