Localized quasiparticles in a fluxonium with quasitwo-dimensional amorphous kinetic inductors

Tamás Kalmár^{1,2,3}

Trevyn F. Q. Larson^{4,5}, Sarah Garcia Jones^{3,4}, Pablo Aramburu Sanchez^{3,4}, Sai Pavan Chitta⁶, Varun Verma⁵, Kristen Genter^{4,5}, Katarina Cicak⁵, Sae Woo Nam⁵, Gergő Fülöp^{1,2}, Jens Koch⁶, Ray W. Simmonds⁵, András Gyenis^{3,4}

¹Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Budapest, Hungary

²MTA-BME Superconducting Nanoelectronics Momentum Research Group, Budapest, Hungary

³Department of Electrical, Computer & Energy Engineering, University of Colorado Boulder, Boulder, CO, USA

⁴Department of Physics, University of Colorado Boulder, Boulder, CO, USA

⁵National Institute of Standards and Technology, Boulder, CO, USA

⁶Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA

tkalmar@edu.bme.hu

High-kinetic-inductance superconductors can be employed in quantum circuits to realize devices with compact footprint, high impedance and sufficient nonlinearity [1]. However, an increased kinetic inductance is usually associated with increased material disorder and enhanced quantum fluctuations [2], which may limit the performance of these quantum circuits.

Here we present how we utilized the kinetic inductance of quasi-two-dimensional, disordered, tungsten silicide (WSi) films in lumped and stripline microwave resonators, inductive and as elements of superconducting fluxonium qubits [3]. Our frequencypower-dependent and microwave measurements of several devices with varying geometry and film thickness show that the loss is increased with the level of disorder, and it is dominated by the quasiparticles within the superconductor [4].

References

- [1] L. Grünhaupt et al., Nat. Mater. 18 (2019) 816–819
- [2] B. Sacépé, M. Feigel'man & T.M.
 Klapwijk, Nat. Phys. 16 (2020) 734–746
- [3] T. F. Q. Larson et al., <u>arXiv:2504.07950</u>
- [4] A. Bespalov et al., Phys. Rev. Lett. 117, (2016) 117002

Figures

Figure 1: False-color optical image of a stripline (top left) and lumped element (top right) style WSi resonator, coupled to the readout feedline. Typical frequency response of a WSi resonator (bottom) at resonator photon numbers. Solid lines are fit to the data.

Figure 2: Circuit schematic of the investigated WSi fluxonium device (top left) and its falsecolor optical image (bottom left). Result of a two-tone spectroscopy measurement carried out on a fluxonium with WSi shunt, with nominal film inductance of L_{K} =300 pH/ \Box . Solid lines are fits according to the Jaynes-Cummings model of the system.