Passive two-photon dissipation for bit-flip error correction of a cat code

Benjamin Huard

A. Marquet, S. Dupouy, U. Reglade, A. Essig, J. Cohen, E. Albertinale, A. Bienfait, T. Peronnin, S. Jezouin, R. Lescanne

Ecole Normale Supérieure de Lyon, CNRS Alice & Bob, Paris

Bosonic codes offer a resource-efficient method to quantum error correction [1]. Of particular interest, autonomous correction was successfully demonstrated for cat codes [2–5],

where the logical $|0\rangle$ and $|1\rangle$ states are coherent states of opposite amplitudes $|a\rangle$ and $|-a\rangle$ in

a superconducting resonator with single-photon loss rates $\kappa 1$ as low as possible. They correct

bit-flip errors by either using the non-linearity of the oscillator or parametrically pumping

couplers to produce two-photon dissipation at a rate $\kappa 2$. The bit-flip time increases

exponentially with $|a|^2$ while the phase-flip rate only increases linearly with $|a|^2$. In this

work, we introduce and experimentally demonstrate a new superconducting circuit designed

to correct for bit-flip errors of cat codes. Crucially, the two-photon dissipation does not

require any pump, so that a single drive is required to stabilize the qubit manifold. This is obtained by nonlinearly coupling the cat qubit to a buffer mode that resonates at twice the

frequency of the cat qubit.

We experimentally demonstrate unprecedented ratios $\kappa 2/\kappa 1$, so that bit flip times well over a

ms can be reached with only a few photons [6]. We also demonstrate quantum gates on this

corrected cat qubit [7].

This work was partly supported by the grant ANR-19-QUAN-0006.

References

- Z. Leghtas et al., Phys. Rev. Lett. 111, 120501 (2013).
- [2] R. Lescanne et al., Nature Physics 16, 509 (2020).
- [3] S. Touzard et al., Phys. Rev. X 8, 021005 (2018)
- [4] C. Berdou et al., PRX Quantum 4, 020350 (2023).
- [5] N. Frattini et al., Phys. Rev. X 14, 031040 (2024).
- [6] A. Marquet et al., Phys. Rev. X 14, 021019 (2024).
- [7] A. Marquet et al., Phys. Rev. Applied 22, 034053 (2024).