Fabrication and Measurements of Vanadium Superconducting Resonators on Silicon Wafers

Yuichi Fujita

Yoshiro Urade, Yuki Hibino, Manabu Tsujimoto, Kunihiro Inomata, and Wataru Mizubayashi

National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Japan

y.fujita@aist.go.jp

build Aiming to large-scale quantum processors, low-loss material systems have been developed to improve the coherence of superconducting qubits [1]. To mitigate material loss, it is essential to verify the correlation between crystallinity of superconducting films and the losses because structurally ordered films may offer lower losses than disordered ones [1,2]. This work explores vanadium (V) as a potential material for producing well-structured films on silicon (Si) wafers. We deposited a 200nm-thick V film on a buffered-HF-treated Si(100) wafer by using DC sputtering method with an argon gas pressure of ~0.04 Pa. lattice Reciprocal mapping (RSM) confirmed that the V film had highly (110)oriented structure as shown in Fia.1. We microfabricated and measured the coplanar wavequide $\lambda/4$ resonators based on the V film on the Si wafer with resonance frequencies of 10-11 GHz [3]. To examine the losses at the V surface, we also prepared the resonators based on a V film with a tantalum (Ta) capping layer (5 nm). We measured the transmission coefficient (S₂₁) and obtained the internal quality factor (Q_{int}) at various averaged photon numbers ($< n_{ph} >$) from the observed S_{21} [1,4]. Furthermore, by analyzing Q_{int} vs $\langle n_{ph} \rangle$ [1], we obtained the value of non-two-level-system (non-TLS) loss (δ_{other}) for the resonator. Figure 2 shows Qint as functions of $< n_{ph} >$, obtained from the observed S₂₁, representatively shown in the inset of Fig.2. The values of Q_{int} at $\langle n_{ph} \rangle = 1$ and δ_{other} for the resonator with (without) the Ta capping layer were obtained as 9.6×10^{5} (4.8×10^5) and 0.7×10^{-6} (2.0×10^{-6}) , respectively. The resonator with the Ta

capping layer had a larger Q_{int} at $\langle n_{ph} \rangle = 1$ and smaller δ_{other} , suggesting that the presence of the Ta capping layer enhances Q_{int} by mitigating losses from the V surface that originate from the non-TLS loss sources. This paper was based on results obtained from a project, JPNP16007, commissioned and by the New Energy Industrial Technology Development Organization (NEDO), Japan.

References

- [1] C. R. H. McRae *et al.*, Rev. Sci. Instrum. 91, 091101 (2020)
- [2] R. Gao *et al.*, Phys. Rev. Materials 6, 036202 (2022)
- [3] Y. Urade et al., APL Mater. 12, 021132 (2024)
- [4] K. S. Khalil *et al.*, J. Appl. Phys. 111, 054510 (2012)

Figure 1: RSM of the Si(100)/V(200 nm) structure.

QUANTUMatter2025