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Recently, single electron interferometers 
have been used as a time resolved sensors 
o f a s m a l l a m p l i t u d e  c l a s s i c a l 
electromagnetic field in the GHz frequency 
range with a 35 pico-second time resolution 
[1].  This is the proof of principle of the 
potential of single electron interferometry 
for on-chip ultra-fast sensing of classical 
a n d , p o t e n t i a l l y q u a n t u m [ 2 ] 
electromagnetic fields.  
In this presentation, we introduce the 
electronic ambiguity function as the 
electron quantum optics analogue of the 
radar theory concept which characterizes 
the resolving power of a radar in return time 
and Doppler shift. In single electron 
interferometry, the electronic ambiguity 
function characterizes the resolution in 
terms of Wigner smith time delay and 
energy changes of the electron during its 
i n t e r a c t i o n w i t h a q u a n t u m 
electromagnetic field.  
We will discuss its properties and show how 
randomization and chirping techniques 
inspired from classical radar theory can be 
used to probe specific regions of the time / 
energy domain. These results open the way 
to single electron inelastic scattering  
amplitude tomography by harnessing the 
full power of single electron sources. 
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Figures 

Figure 1: upper row: contour plots of the 
modulus of the ambiguity function for the 
Landau (left panel) and Levitov (right panel) 
excitations. The difference between the 
directions of algebraic and exponentiel decay 
is clearly visible. Lower row: Electronic Wigner 
functions for the corresponding excitations. 
Here γe denotes the inverse of the duration of 
the wavepacket. 
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Appendix A, the electron radar equation (9) tells us that
using a time shifted probe is equivalent to look at the
time shifted e!ective scattering matrix. In the same way,
using an energy shifted probe is equivalent to use an en-
ergy shifted e!ective scattering matrix and shifting the
Aharonov-Bohm flux. Adjusting te and ωe to maximize
the signal thus amounts to probing R̃(”, ε) in the most
e!ective way, by sending the probe excitations at the
proper time and energy for being most a!ected by the
incident radiation.

These adjustments being done, the electron radar’s
resolution in the (”, ε) plane is given by the close to
unity spots of |AS(ω →”, ε2 → ε)| when varying the con-
trol parameters ω and ε2. A more quantitative analysis
thus requires analyzing the ambiguity functions gener-
ated by the available single-electron sources before dis-
cussing techniques to reshape them in order to extend
the exploration range in the (”, ε) plane.

2. The Landau quasi-particle

The Landau excitation [11] is a Lorentzian wave packet
in energy, truncated to energies above the Fermi level

ϑ̃e(ω) =
Ne #(ω)

ω → ωe + iϖe/2
(14)

where Ne ensures normalization, ϖe denotes the inverse
of the wave packet’s duration and ⊋ωe is its emission en-
ergy. Landau excitations are emitted by the mesoscopic
capacitor in the single-electron source regime [2]. When
they are in the energy resolved regime (ϖe ↑ ωe), the
truncation of the wave packet can be neglected. Within
this regime, the associated ambiguity function can be ap-
proximated by

ALan(”, ε) =
ϖe e→ωe|ε |/2

ϖe → i”
ei

!|ω|
2 e→iεϑe . (15)

Its modulus, depicted on Fig. (3), has an exponential
decay in ε over the time scale εe = 1/ϖe and a Lorentzian
behavior in ” over the scale ϖe.

Thus, the Landau excitation, allows to probe a radia-
tion at a fixed frequency ωe with a frequency resolution
given by ϖe. Both of these parameters can be experi-
mentally shifted over a limited interval which is why this
excitation is of particular interest. Typical injection en-
ergies are of a few tens of µeV corresponding to ωe/2ϱ
in the 10 to 20GHz. The linewidth is of the order of the
GHz corresponding to a duration of 1 ns [2, 14].

3. The Leviton excitation

Another remarkable excitation is the Leviton [3] which
consists of a single-electron excitation on top of the Fermi
sea in a Lorentzian wave packet in position (or equiva-
lently in time) with width εe. It is generated by apply-
ing a Lorentzian voltage pulse of total charge →e on the
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FIG. 3. (Color online) Contour plots for |A(!, ω)| = 0.9, 1/2,
1/4 and 1/8: (Top left) Landau excitations for large !e/εe,
plotted in terms of (!/εe, εeω); (Top right) Leviton excita-
tions in the variables (!ωe, ω/ωe). The di”erence between the
direction of exponential and algebraic decay is quite visible.
The corresponding electronic Wigner functions are also de-
picted on the row below in terms of dimensionless variables:
(εet, (ϑ → ϑe)/εe) for the Landau excitation and (t/ωe,ϑωe)
for the Leviton excitation.

Fermi sea [15]. Typical durations are in the few tens of
ps range [5, 16], possibly shorter in the future via the use
of THz technology [17]. Note that in practice, Levitons
must have durations εe ↭ ⊋/kBTel ↓ 76 ps at electronic
temperature Tel ↓ 10mK to avoid being strongly a!ected
by thermal fluctuations.

The Leviton wave function is given by

ϑLev(t) =

√
εe
ϱvF

1

t→ iεe
(16)

and therefore its ambiguity function is given by:

ALev(”, ε) =
2εe e→εe|!|

2εe + iε
e→i|!|ε/2 (17)

Apart from the phase factor e→iϑeε , Eqs. (15) and (17)
are related by the duality ” ↔ →ε , ϖe ↔ 2εe which,
in the limit ωe ↗ ϖe for the Landau quasi-particle, is
expected.

Compared to the Landau excitation, the modulus of
the Leviton ambiguity function, as depicted on Fig. 3,
decays more rapidly in ” for a value of the parameter εe.
A practical consequence is that probing short time scales
with Leviton excitations requires generating very short
pulses as we shall see in the next subsection.


