Spin dephasing in a silicon double quantum dot and its implications for spin qubit shuttling

Łukasz Cywiński¹

J. A. Krzywda^{2,} M. Volmer³, T. Struck^{3,4}, L. R. Schreiber^{3,4}

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-226 Warszawa, Poland

² <aQaL> Applied Quantum Algorithms, Lorentz Institute and Leiden Institute of Advanced Computer Science, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands

³JARA-FIT Institute for Quantum Information, Forschungszentrum Jülich GmbH and RWTH Aachen University, Aachen, Germany. ⁴ARQUESystemsGmbH, 52074Aachen, Germany.

lcywt@ifpan.edu.pl

I will discuss spin dephasing in two scenarios that arise in the context of coherent shuttling of an electron spin gubit. In the first one, an electron is shuttled through a chain of tunnel-coupled quantum dots via adiabatic sweeps of interdot detunings. In presence of realistic inhomogeneity of spin splittings in neighbouring quantum dots, both high- and low-frequency noise in detuning determines the dephasing of the electron shuttled between the two dots at low shuttling velocities [1]. In the second scenario, we consider dynamics of a spatially separated spin singlet S in a double quantum dot, in a setup in which one of the dots can also be moved to a distance d from the stationary one (and back) with the use of conveyorbelt shuttler [2,3,4]. In such an experiment, dephasing of S-T₀ superposition is suppressed, compared to the case of stationary dots, due to motional narrowing of the influence of quasi-static local noises in spin splitting [3]. For the single-spin Zeeman splitting close to the valley splitting in each of the dots, spin-valley coupling leads to mixing of S and T_0 states with one of polarized triplets. I will discuss how the spinvalley mixing modifies the way in which spinsplitting fluctuations in each dot affect the S-T₀ coherence, and how valley splitting fluctuations become active at the

dephasing of the spatially separated singlet near the spin-valley hotspot.

References

- J. A. Krzywda and Ł. Cywiński, Phys. Rev. B 111 (2025) 115305.
- [2] V. Langrock, J. A. Krzywda et al., PRX Quantum 4 (2023) 020305.
- [3] T. Struck et al., Nat. Comm. 15 (2024) 1325.
- [4] M. Volmer, T. Struck at al., npj Quantum Information 10 (2024) 61.

Figures

QUANTUMatter2025