The vanishing Fermi velocity in Periodically Strained Graphene

Léo-Malik Benneka¹

T. Rhouma², G. Trambly de Laissardière², C. Winkelmann¹, M. Zelsmann³, V. Renard¹

¹Université Grenoble Alpes, CEA-IRIG-PHELIQS, 38000 Grenoble, France ²CNRS-Laboratoire de Physique Théorique et Modélisation, CY Cergy Paris Université, 95302 Cergy-Pontoise, France ³CNRS-LTM, 38000 Grenoble, France

leo-malik.benneka@cea.fr

In recent years, intense research has been made in band structure engineering of twodimensional systems. Most notably Flat bands were obtained in Twisted Bilayer Graphene (TBG) and shown to exhibit superconductivity and various stronaly correlated phases [1]. An alternative route to realizing similar flat bands involves triangular inducing а superlattice of Periodic Strain on monolayer Graphene (PSG) by a corrugated substrate (Fig.a). It can be shown that the height modulation h_0 and the superlattice periodicity L serves as tuning parameters for controlling band flattening and the Fermi velocity v_F near the Dirac cones [2, 3].

In this poster, we will show, by using tightbinding calculations, that not only does v_F decrease as h_0 increases [4] but eventually $v_{\rm F}$ vanishes at a finite value of h_0 for any superlattice given size L (Fig.b). Remarkably, this property is universal for any size L, regardless of whether C_2 -leading symmetry is broken to bandgaps— or whether in-plane graphene bond relaxation is taken into account. Furthermore, a similar behaviour is observed (Fig.c) when the periodic strain superlattice is rotated with respect to graphene atomic lattice. These predictions may help the design of experimental devices.

References

[1] Cao et al., Nature, 556 (2018) 43-50

- [2] Mao et al., Nature, 7820 (2020) 215-220
- [3] Yuan et al., Phys. Rev. B, 24 (2024) 245408
- [4] S. P. Milovanović *et al.*, Phys. Rev. B, 24 (2020) 245427

Figures: a) Model schematic of PSG **b)** V_F versus order parameter for different lattice pitch **c)** and for different lattice orientation at $L = 14.8 \pm 0.2$ nm.