Theoretical study of GdW_{10} and GdW_{30} molecules energy transitions and experimental fitting.

Xavier del Arco

David García Pons, Jorge Pérez Bailón, María José Martínez Pérez y David Zueco.

> Instituto de Nanociencia y Materiales de Aragón
> (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain

Departamento de Física de la Materia Condensada, Universidad de Zaragoza
xavierr@unizar.es

Single Ion Magnets (SIM) are appealing for theoretical research given their simple Hamiltonian. A very promising family of SIM involves lanthanide atoms encapsulated by polyoxometalates (POMs), which represent a class of mononuclear lanthanoid complexes known for their intriguing singlemolecule magnetic properties[1]. In this study, we investigated the Hamiltonian characteristics of two specific POMs, GdW ${ }_{10}$ and GdW $_{30}$ [2], and examined the underlying physical phenomena governing their energy transitions. Our analysis aimed to provide accurate predictions and enhance the theoreticalexperimental consistency in the understanding of these systems. Our final goal is to combine lanthanide SIM with superconducting and magnonic circuits for quantum computing and sensing applications.

References

[1] Cardona-Serra S, Clemente-Juan JM, Coronado E, Gaita-Ariño A, Camón A, Evangelisti M, Luis F, Martínez-Pérez MJ, Sesé J. Lanthanoid single-ion magnets based on polyoxometalates with a 5-fold symmetry: the series [LnP5W30O110]12- (Ln3+ = Tb, Dy, Ho, Er, Tm, and Yb). J Am Chem Soc. 2012 Sep 12;134(36):14982-90. doi:
10.1021/ja305163t. Epub 2012 Aug 30. PMID: 22894703.
[2] Jenkins, Duan, Diosdado, García-Ripoll, GaitaAriño, Giménez-Saiz, Alonso, Coronado, \& Luis. (2017). Coherent manipulation of threequbit states in a molecular single-ion magnet. Physical Review B, 95(6).
https://doi.org/10.1103/PHYSREVB.95.06442 3

Figures

Figure 1: Plot of the theoretical energy levels transition on the experimental measure.

