Spectroscopy and cavity-enhanced emission of Europium-based molecular systems

Evgenij Vasilenko¹

Vishnu Unni C², Weizhe Li², Nicholas Jobbitt², Senthil Kumar Kuppusamy³, Mario Ruben³, David Hunger²

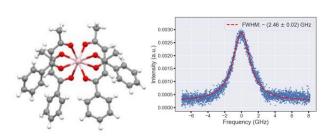
¹Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Karlsruhe, Germany

²Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany

³Institute of Nanotechnology & Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany

evgenij.vasilenko@kit.edu

Rare-earth ions in solid-state hosts are a candidate promising for optically addressable spin qubits, owing to their excellent optical and spin coherence times. Recently, Eu³⁺-based molecular materials have also been shown to possess excellent optical coherence properties [1]. However, Eu³⁺-doped nanocrystals have a long optical lifetime of the ${}^{5}D_{0}{}^{-7}F_{0}$ transition (T_{1,opt} ~ ms) and a low branching ratio (<1%) [2], limiting single-ion experiments. Both issues can be solved by enhancing the emission of EU³⁺ with high-finesse fiber-based microcavities.


We study Eu³⁺-doped molecular crystalline materials and powders, exhibiting long spin lifetimes and narrow homogeneous linewidths at 4.2K [1,3]. On a single, macroscopic molecular crystal of [Eu(Ba)4(pip)] [see Figure 2], we measure narrow inhomogeneous linewidths, hourlong spin T_1 , and photon echoes at <1K. Steps to integrate molecular crystals into a fiber cavity in the form of a crystalline thin film are reported. Open-access Fabry-Pérot fiber cavities have been demonstrated to achieve high quality factors and low mode volumes, while simultaneously offering large tunability and efficient collection of the cavity mode [4]. The home-built cavity setup was successfully integrated into a cryostat and demonstrated high mechanical stability during operation, which is required for cavity-enhanced ensemble spectroscopy.

The presented results are important steps towards single-ion readout and control being necessary for scalable quantum registers.

References

- [1] Serrano et al., Nature, 603, 241–246 (2022)
- [2] Bartholomew et al., Nano Lett., 17, 2, 778–787 (2017)
- [3] Kuppusamy et al., J. Phys. Chem. C 127, 22 (2023)
- [4] Hunger et al., New J. Phys 12, 065038 (2010)

Figures

Figure 1: Left: Mononuclear Eu³⁺-based molecular complex [1]. Right: Narrow inhomogeneous line of the ⁵D₀-⁷F₀ transition measured in a powder sample.

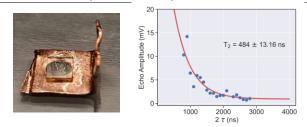
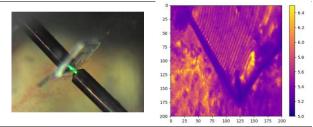



Figure 2: Left: Macroscopic molecular crystal on a copper holder was installed in a dilution refrigerator. Right: Measured two-pulse photon echo decay for the ${}^{5}D_{0}{}^{-7}F_{0}$ transition.

Figure 3: Left: Cavity integration of molecular crystals. Right: Single 2D – transmission raster scan of a crystalline region, carried out at room temperature. X- and Y-axes are pixel numbers.

QUANTUMatter2024