A scalable local addressing system for optically addressable qubits using integrated photonics

Ramon Szmuk¹

Noel Wan², Mengdi Zhao², Henry Thoreen², Robert DeAngelo², Anshuman Singh², Frédéric Peyskens², Nathan Gemelke², Daniel Dominguez³, Andrew Leenheer³, Matt Eichenfield^{3,4}, Dirk Englund⁵, Yoav Romach¹, Yonatan Cohen¹

¹Quantum Machines Inc., Tel Aviv, Israel ²QuEra Computing Inc., Boston, MA United States ³Sandia National Laboratories, Albuquerque, NM, United States ⁴University of Arizona, Tucson, AZ, United States ⁵Massachusetts Institute of Technology, Cambridge, MA, United States

ramon@quantum-machines.co

Abstract

Among the leading approaches to scalable quantum computers are systems made of optically addressable gubits, such as neutral atoms, trapped ions and solid-state emitters. In these platforms, quantum information is typically manipulated using optical fields, so that scaling to large systems demands a high channel-count, high-speed, and modulators precise optical at low incremental cost. Existing solutions are not practical beyond a few tens of channels, limiting the number of independent degrees of freedom in the quantum computer. Here we present a Photonic Control Unit (PCU) that enables scaling of the number of local addressina beams usina integrated photonics. Using the PCU, we experimentally demonstrate high-speed, high-extinction modulation and multi-channel operation, supporting the visible to near-infrared wavelength range, therefore meeting the precision, wavelength power, and requirements of quantum computing applications. We outline the route to hundreds achievina to thousands of channels for scalable optical control of qubits.