Proximity-induced Magnetism and Spin-orbit Coupling in Graphene/V_xW_{1-x}Se₂ Heterostructure

Josef Světlík^{1,2}

L. Camosi¹, W. Savero Torres¹, L. A. Benítez^{1,2}, Ch. Stefani^{1,2}, I. Verzhbitskiy³, I. Fernández Aguirre^{1,2}, J. F. Sierra¹, G. Eda³, S. O. Valenzuela^{1,4}

¹ICN2, Bellaterra (Barcelona), Spain ²UAB, Bellaterra, 08193 Barcelona, Spain, ³NUS, 21 Lower Kent Ridge Rd, 119077 Singapore ⁴ICREA, 08010 Barcelona, Spain

Josef.svetlik@icn2.cat

Graphene has shown areat potential as an elementary building block of future spintronic devices. Its high carrier mobility and intrinsically low spin-orbit coupling (SOC) lead to long spin diffusion length, making graphene an ideal spin-channel material. Moreover, its atomic thickness promotes proximity-induced effects that provide new ways to control spin transport [1]. For instance, graphene in contact with semiconducting transition metal dichalcogenides (e. g. WSe₂) develops a proximity SOC and a complex spin texture. Such a modification results in anisotropic spin relaxation [2] and allows to efficiently interconvert charge and spin-currents [1,3,4]. Alternatively, interfacing graphene with magnetic materials induces exchange splitting [5], possibly allowing gate-tuneable spin-polarized currents. Doping TMDCs with magnetic atoms has been reported to induce long-range magnetism up to room temperature. In particular, $V_xW_{1-x}Se_2$ shows (anti-)ferromagnetic behaviour depending on the doping level [6]. By performing nonlocal spin precession measurements, we observe signatures of magnetism together proximity-induced with SOC in graphene/V_xW_{1-x}Se₂ heterostructure and investigate the interplay of these two effects.

We acknowledge funding from the EU H2020 Marie Sklodowska-Curie grant agreement No. 754558 and FET-PROACTIVE project TOCHA under Grant No. 824140.

References

- [1] Sierra J. F., et al., Nature Nanotechnology, **8** (2021), 856–868.
- [2] Benítez, L. A., et al., Nature Materials, 3 (2018), 303–308.
- [3] Safeer, C.K., et al., Nano Letters, **2** (2019), 1074–1082.
- [4] L. A. Benítez et al., Nature Materials,
 2 (2020), 170 -175.
- [5] Ghiasi, T.S. et al., Nature Nanotechnology, **7** (2021), 788–794.
- [6] Pham, Y.T.H. et al., Advanced Materials, **45** (2020), 2003607.

Figures

Figure 1: Schematics of the measurement configuration of lateral spin-valve made of V_xW_{1-x}Se₂ partially covering graphene channel, and two ferromagnetic electrodes used as spin injector (FM₁) and detector (FM₂), respectively (Top). Representative spin-precession curves obtained by measuring nonlocal resistance as a function of magnetic field applied along graphene channel (Bottom). Arrows indicate magnetization of the ferromagnetic electrodes.