Ultrastrong coupling between Andreev bound states and a high impedance lumped-element resonator

Oleg Shvetsov¹

A. Ankit¹, V. Buccheri¹, I. Cools¹, T. Kanne², J. Nygård², A. Geresdi¹

¹Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE 41296 Gothenburg, Sweden

²Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

shvetsov@chalmers.se

Josephson junctions in Al/InAs nanowires host Andreev bound states¹ (ABSs) and can be considered as a platform for realization of gate-tunable Andreev qubits²⁻⁴. An acute challenge of such architecture is to improve the coupling between an ABS and a microwave resonator.

Here, we report microwave characterization of an Al/InAs nanowire weak link embedded in a superconducting loop with a lumpedelement resonator patterned from a thin NbTiN film with high kinetic inductance. We demonstrate that our approach offers a compact geometry, a high resonator impedance above 12 kOhm and remarkably large coupling rates between ABSs and the resonator mode reaching the value of 1.2 GHz. This result provides a basis for exploration of strongly correlated lightmatter states in cQED.

References

- A. Furusaki and M. Tsukada, Phys. Rev. B 43, 10164 (1991).
- [2] A. Zazunov et al, Phys. Rev. Lett. 90, 087003 (2003).
- [3] M. Hays et al, Phys. Rev. Lett. 121, 047001 (2018)
- [4] C. Metzger et al, Phys. Rev. Res. 3, 013036 (2021).

Figures

Figure 1: (a) Differentially driven lumped element resonator coupled to a nanowire weak link. Inset: SEM picture of the nanowire Josephson junction. (b) Circuit equivalent of the device. (c) Gate-tunable microwave response.

Channel	∆ (GHz)	Т	δ _{zp} (Rad)
1	13.95	0.282	0.121
2*	15.5	0.2	0.121

Figure 2: (a) Two-tone spectrum in dispersive regime. (b) Corresponding single-tone spectrum. Dashed lines show the fitted spectra. Table: parameters for a 2-channel fitting (Δ – ABS energy gap, τ – channel transmission, δ_{zp} – zero-point phase fluctuations in the weak link). *The second channel is introduced to account for all the higher energy states.