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Group IV spin qubits are promising 

candidates for realizing quantum processors 

due to their scalability, CMOS compatibility, 

and long coherence times. In particular, Ge 

has become a very attractive platform 

because of the low effective mass and low 

hyperfine interaction. In addition, strong 

spin-orbit interaction allows the spin to be 

driven electrically. From 2018 and within a 

few years, a Loss-DiVincenzo [1], a singlet-

triplet hole spin qubit [2], a two-qubit [3], 

and a four-qubit Ge quantum processor [4] 

have been realized, demonstrating the 

potential of Ge for quantum information.  

 

Manipulation of spin qubits can be 

achieved via multiple driving mechanisms:   

Electron Spin Resonance [5], Electron Dipole 

Spin Resonance [6], g-tensor modulation [7], 

or exchange interaction [8].  Owing to the 

low effective mass of holes in Ge, exchange 

interaction can have a much stronger 

effect compared to Silicon [9], thereby 

warranting the study of its effects.  

 

Here, we show a spin qubit in a double 

quantum dot hosted in Ge/SiGe 

heterostructure operated in a regime 

where the exchange interaction dominates 

over the Zeeman energy difference. We 

measure three microwave-driven transitions 

of two-hole spin states that can be 

coherently manipulated. To investigate the 

impact of exchange on the driving 

mechanism, we study the Rabi frequency 

dependence as a function of magnetic 

field, B, and detuning, . 
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Figure 1: Computer-aided design of the gate 

layout of the device under study. 

 
Figure 2: Spectroscopy of the three spin 

transitions as a function of magnetic field and 

detuning. 


