Magneto-optical properties of Fourier-limited Tin-Vacancy centers in diamond

Jeremias Resch¹

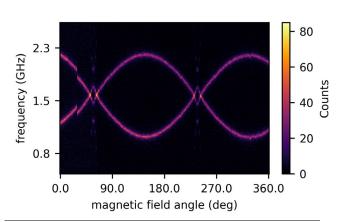
Ioannis Karapatzakis¹, Marcel Schrodin¹, Philipp Fuchs³, Michael Kieschnick⁴, Jan Meijer⁴, Christoph Becher³, Wolfgang Wernsdorfer^{1,2}, David Hunger^{1,2}

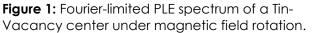
¹Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany

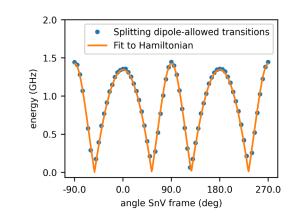
²Institute for Quantum Materials and Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany

³Department of Physics, Saarland University, Saarbrücken, Germany

⁴Felix-Bloch-Institute for Solid State Physics, University of Leipzig, Leipzig, Germany


jeremias.resch@kit.edu


Scalable quantum information processing requires spectrally stable interfaces between fiber-coupled photons and solid-state qubits. For remote entangling, bright and indistinguishable photons are necessary and thus high demands on the optical transitions the spin-photon interfaces of are compulsory. Group-IV color centers in diamond offer by symmetry a first-order insensitivity to charge noise, making them promising candidates for scalable integration. By an optimized spectroscopy method, we identify charge-state and spectrally stable Tin-Vacancy (SnV) centers with Fourier-limited optical linewidths using resonant excitation. We implement a 3D vector magnet in a confocal microscope setup to analyze the magneto-optical properties of the SnV electron spin at cryogenic temperatures. We determine long spin relaxation times as predicted by the larger spin-orbit splitting of the SnV center compared to other Group-IV defects. By rotating the magnetic field with respect to the symmetry axis, we determine the angle dependent splitting of the electron spin ground and excited states. This allows a full fit to the electron spin Hamiltonian and determination of the orbital quenching factors as previously derived in DFT calculations [1].


References

 Thiering & Gali, Phys. Rev. X, 8 (2018), 021063

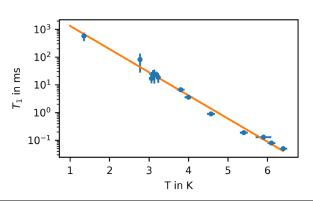

Figures

Figure 2: Full fit of the dipole-allowed transitions to the electron spin Hamiltonian in the local defect frame.

Figure 3: Electron spin lifetime under varying temperatures exceeding 0.5s at 1.3K.

QUANTUMatter2024