QAOA ansatz and differential evolution for quantum molecular comparison

Mariamo Mussa Juane¹

Antón Rodríguez Otero², María Paredes-Ramos³, Jochem Nelen⁴, Alejandro Borrallo Rentero², José Manuel López Vilariño³, Andrés Gómez Tato¹

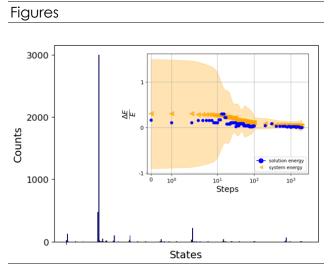
¹Galicia Supercomputing Center, Avenida de Vigo s/n, 15705 Santiago de Compostela

²Fujitsu International Quantum Centre, Rúa da República Checa, 40, 15707 Santiago de Compostela

³Hijos de Rivera SAU, C/José María Rivera Corral 6, 15008 A Coruña

⁴UCAM Av. de los Jerónimos, 135, 30107 Guadalupe de Maciascoque, Murcia

mmussa@cesga.es


Abstract

The perception of tastes and sensations: sweet, sour, bitter, acid, salty, umami, but also freshness, cold, warmth, and even carbonation, amongst others, is mediated different receptors. With a virtual by screening (VS) method implemented and gate-based refined for quantum computation, we can predict whether a molecule binds adequately to the freshness receptor, activating the transmission signal that indicates the freshness sensation to the brain. The aim is to design, before consumption, tailor-made food and beverage products.

The VS method used determines the maximum common substructure between molecules, mappable to the maximum-weighted set problem over a conflict graph, where the edges are conflicts to avoid. For this case, we implement a weighted variation of the original QAOA with (1+n) parameters per layer inspired by the ma-QAOA [1], being n the number of qubits. We choose differential evolution as the optimiser since it evades local minima [2]. With two layers, we find optimal configurations until 19 qubits through emulation with standard deviations of upper order 0.1 (Figure 1).

References

- Herrman, R., Lotshaw, P.C., Ostrowski, J. et al. Multi-angle quantum approximate optimization algorithm. Sci Rep 12, 6781 (2022).
- [2] Faílde, D., Viqueira, J.D., Mussa Juane, M. et al. Using Differential Evolution to avoid local minima in Variational Quantum Algorithms. Sci Rep 13, 16230 (2023).

Figure 1: Final distribution with 3000 out of 10000 counts for the optimal configuration with 0 conflicts (molecule a-cedrene with 19 qubits). Embedded, energy evolution of the optimal configuration with its standard deviation and of the whole system.

Acknowledgements

This work was supported by MICINN through the European Union NextGenerationEU recovery plan (PRTR-C17.11), and by the Galician Regional Government through the "Planes Complementarios de I+D+I con las Comunidades Autónomas" in Quantum Communication.