A cavity-enhanced spin-photon interface for color centers in diamond

Kerim Köster¹

M. Pallmann¹, A. Lauko¹, J. Heupel², P. Fuchs³, M. Kieschnick⁴, M. Förg⁵, T. Hümmer⁵, C. Popov², J. Meijer⁴, C. Becher³, D. Hunger¹

¹Karlsruher Institut für Technologie, Wolfgang-Gaede-Str. 1, 76131 Karlsruhe

²Universität Kassel ³Universität des Saarlandes ⁴Universität Leipzig ⁵Qlibri GmbH

kerim.koester@kit.edu

Building a long-distance quantum network is one of the big challenges in the field of quantum communication, which requires the development of a quantum repeater. A crucial component of this device is an efficient, coherent spin photon interface. Coupling color centers in diamond to a microcavity shows promise as a viable approach.

In our experiments, we integrate diamond membranes into open access fiber-based Fabry-Perot microcavities to attain emission enhancement into a single well-collectable mode [1,2]. We present our fully tunable, cryogenic cavity platform operating either in a dilution or closed-cycle cryostat where we achieve a picometer mechanical stability [3]. By utilising this versatile platform, we show Purcell-enhanced fluorescence of an ensemble of nitrogen vacancy (NV) centers [4] as well as first results from a single tin vacancy (SnV) coupled to a cryogenic cavity.

References

- D. Hunger et al.
 AIP Advances 2 (2019) 012119
- [2] D. Hunger et al. NJP **12** (2010) 065038
- [3] M. Pallmann, T. Eichhorn et al. APL Photonics **8** (2023) 046107
- [4] M. Pallmann, K. Köster et al. arXiv:2311.12723 (2023)
- [5] J. Heupel et al. Micromachines **11** (2020) 1080

Figure 1: A fully tunable fiber-based Fabry-Perot microcavity. The diamond membrane is integrated via a van der Waals-Bond [5].

Figure 2: Purcell-enhancement of an ensemble of NV centers apparent as a lifetime shortening. The lifetime was extracted from the antibunching time constant of a powerdependent set of g⁽²⁾ measurements.