High-kinetic inductance coupled cavity arrays for analog quantum simulation

Vincent Jouanny

S. Frasca, V.J. Weibel, L. Peyruchat, M. Scigliuzzo, F. Oppliger, F. De Palma, D. Sbroggio, G. Beaulieu, O. Zilberberg and P. Scarlino

HQC, Institute of Physics, EPFL, Switzerland LPQM, Institute of Physics, EPFL, Switzerland Department of Physics, University of Konstanz, Konstanz, Germany

Vincent.jouanny@epfl.ch

In the field of analog quantum simulation, coupled cavity arrays (CCAs) have emerged as promising platforms for creating quantum baths of varying complexity, crucial for emulating complex many-body Hamiltonians [1, 2]. However, enhancing the reliability and compactness of these systems is of fundamental interest for their practical utility. Addressing this challenge, our work introduces a novel compact ($50x75 \mu m^2$), versatile, and low-disorder ($\sigma/f = 0.21$ %) CCA platform based on high-kinetic inductance NbN thin films (Figure 1). Additionally, we present a new approach to study and extract disorder in CCAs by leveraging symmetry-protected topological SSH modes (Figure 2). The adaptability of our platform in controlling the mode density presents exciting prospects for the study of quantum impurity models and atom-photon bound states physics [3,4].

References

- [1] Georgescu et al, Review of Modern Physics, 1 (2014) 153-185.
- [2] Zhang et al, Science, 6629 (2023) 278-283
- [3] Messinger et al, Physical Review A, 3 (2019) 032325
- [4] Scigliuzzo et al, Physical Review X, 3 (2022) 031036

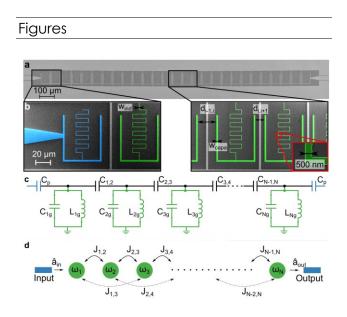
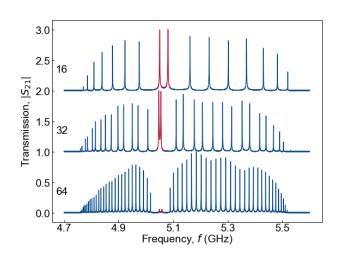
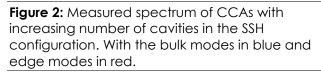




Figure 1: High kinetic inductance metamaterial.
a. Optical micrograph of the metamaterial.
b. Scanning electron micrograph of the metamaterial.
c. Lumped-element model
d. Coupled cavity model of the metamaterial.

