Adiós flatland – Quantum transport in MoS₂ nanotube and nanoribbon quantum dots

Figures

Andreas K. Hüttel¹

R. T. K. Schock¹, S. Obloh¹, K. Schneider¹, J. Neuwald¹, M. Kronseder¹, M. Malok²,

L. Pirker^{2,3}, M. Remŝkar²

¹Institute for Exp. and Applied Physics, University of Regensburg, Regensburg, Germany ²Solid State Physics Department, Institute Jožef Stefan, Ljubljana, Slovenia ³J. Heyrovský Institute of Physical Chemistry,

Czech Academy of Sciences, Prague, Czech Republic

andreas.huettel@ur.de

Extensive research on planar, 2D TMDCs focuses on their exceptional electronic and optical properties arising from their inherent layer structure. Despite numerous studies on optical behavior, achieving single-level transport in lithographic quantum dots at low temperatures, crucial for quantum electronic devices, faces challenges due to the need for small confinement potentials and disorder at nanoflake edges.

A highly promising solution [1,2] involves using crystalline MoS_2 nanotubes grown via a chemical transport process, for natural electron confinement in two directions. With bismuth as contact material, Schottky barriers can be avoided. Low-temperature measurements confirm nondestructive, transparent contacts and single-level quantum transport at T < 100mK [1].

To further reduce disorder, an innovative dry transfer technique with anthracene crystals as a pick-up material [3] is employed; several fabrication variants are discussed.

References

- R. T. K. Schock, A. K. Hüttel, et al., Adv. Mat. 35 (2023), 2209333
- [2] S. Reinhardt, A. K. Hüttel, et al., pssRRL 13 (2019), 1900251
- [3] K. Otsuka *et al.*, Nat. Comm. 12 (2021), 3138

Figure 1: Coulomb "diamonds" of a MoS_2 nanoribbon (nanotube collapsed during growth), with charging energies consistent with the active device region.

Figure 2: Top: Anthracene crystal based residuefree transfer of MoS₂ nanotubes. Bottom: MoS₂ nanotube device (optical and SEM image).