Large Anomalous Ettingshausen effect in a micron-sized magnetic Weyl semimetal on-chip cooler

Pascal Gehring¹

Mohammadali Razeghi¹, Jean Spiece¹, Valentin Fonck1, Yao Zhang³, Michael Rohde¹, Rikkie Joris², Philip S. Dobson⁴, Jonathan M. R. Weaver⁴, Lino da Costa Pereira², Simon Granville³

¹IMCN/NAPS, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, 1348, Belgium.

²QSP, KU Leuven, Leuven, 10587, Belgium.

³Robinson Research Institute, Victoria University of Wellington, Wellington, 610101, New Zealand.

⁴James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, United Kingdom.

pascal.gehring@uclouvain.be

Solid-state cooling devices offer compact, quiet, reliable and environmentally friendly solutions that currently rely primarily on the thermoelectric (TE) effect. Despite more than two centuries of research, classical thermoelectric coolers suffer from low efficiencies which hampers wider application. In this study, the less researched Anomalous Ettingshausen effect (AEE), a transverse thermoelectric phenomenon, is presented as a new approach for on-chip cooling. This effect can be boosted in materials with non-trivial band topoloaies as Heusler demonstrated in the allov Co₂MnGa. Enabled by the high quality of our material, in situ scanning thermal microscopy experiments reveal a recordanomalous Ettinashausen breakina coefficient in µm-sized on-chip cooling devices at room temperature. A significant boost of 44% of the effect by the intrinsic topological properties, in particular the Berry curvature of Co₂MnGa, emphasises the unique potential of magnetic Weyl semimetals for high-performance spot cooling in nanostructures.

Figures

Figure 1: Anomalous Ettingshausen effect (bottom panel) and Joule heating (top panel) in "U"-shaped Co₂MnGa micro devices. Scale bar: 10µm.

