Physically motivated enhancements of variational quantum eigensolvers for quantum chemistry

David Casanova
Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain

david.casanova@dipc.org

The Adaptive Derivative-Assembled PseudoTrotter Variational Quantum Eigensolver (ADAPT-VQE) [1] has emerged as a promising approach in quantum chemistry. Nevertheless, the application of ADAPT-VQE with noisy quantum devices requires to enhance its efficacy. Leveraging insights from electronic structure theory, we concentrate on optimizing state preparation without added computational burden and guiding ansatz expansion (Figure 1) to yield more concise wavefunctions with expedited convergence toward exact solutions. These advancements culminate in shallower circuits and reduced number of measurements. The performance of the new ADAPT-VQE variants will be assessed across mono, di, and tridimensional arrangements of H 4 models, as well as in the ground state calculation of the water molecule. Ultimately, this work attests to the viability of physically-motivated strategies in fortifying ADAPT-VQE's efficiency, marking a significant stride in quantum chemistry simulations.

References

[1] Grimsley, H. R.; Economou, S. E.; Barnes, E.; Mayhall, N. J., Nat.
Commun., 10 (2019) 3007.

Figures

Figure 1: Representation of the orbital subspace strategy to guide ansatz growth in ADAPT-VQE.

