Topological Phase Transition from 1D Edge States to 0D End States in Germanene Nanoribbons

Klaassen¹, Lumen A.G. Eek², Dennis J. Rudenko³. Esra Alexander N. D. van 't Westende¹, Carolien Castenmiller¹, Zhiauo Zhang^{1,4}, Bene Poelsema¹, Arie van Houselt¹, Motohiko Ezawa⁵, Cristiane M. Smith², Harold J.W. Zandvliet¹ and Pantelis Bampoulis¹ ¹University of Twente, Drienerlolaan 5, Enschede, The Netherlands ²Utrecht University, The Netherlands ³Radboud University Nijmegen, The Netherlands ⁴Fudan University, China ⁵University of Tokio, Japan

p.bampoulis@utwente.nl

Investigating topological phases and their transitions is crucial for discovering new guantum states and advancing topological device technology. The transitions between distinct topological phases, especially from two-dimensional (2D) to one-dimensional (1D) systems, remain largely unexplored and poorly understood. In this study, we synthesized germanene nanoribbons, which are 2D topological insulators [1], featuring zigzag terminations, large topological gaps (100-150 meV), and metallic edge states. These nanoribbons enable the packing of a dense array of parallel 1D topological edge systematically states. By varying the width, we monitored nanoribbon the evolution of their topological characteristics, pinpointing a transition to a 1D topological insulator phase below a critical width of about 2 nm. This transition is marked by the vanishing of the 1D edge states and the emergence of distinct zero-dimensional (0D) end states. We obtain theoretically and experimentally that the 0D topological behavior of (thin) Germanene nanoribbons is rich and complex. The topological phase depends in a non-monotonic way on ribbon width, spin-orbit coupling, staggered mass, and termination.

References

 P. Bampoulis et al. Phys. Rev. Lett. 130, (2023) 196401 Figures

Figure 1: (a) Large-scale STM image of germanene nanoribbons grown on the Ge₃Pt substrate. **(b)** Detailed view of a germanene nanoribbon. **(c)** Close-up of the area marked by the red square in (b), highlighting the honeycomb lattice structure of germanene.

