Symmetry-protected gates on superconducting circuits

Jesús Matías Alcaine Cuervo^{1,2,3}

Enrique Rico^{1,3,4}, Juan José García-Ripoll⁵

¹EHU Quantum Center, University of the Basque Country UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Biscay, Spain

²BCMaterials, Basque Center for Science, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Biscay, Spain ³Department of Physical Chemistry, University of

the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Biscay, Spain

4IKERBASKE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Biscay, Spain

⁵Institute of Fundamental Physics, IFF-CSIC, Calle Serrano 113b, 28006 Madrid, Spain

jesusmatias.alcaine@ehu.eus jesusmatias.alcaine@bcmaterials.net

Abstract

The study of qubit architectures with intrinsic protection against noise has been an evergrowing field of research. The $0 - \pi$ qubit is an exciting case, owing to its multimode nature and resilience against noise. Here we deeply study the $0 - \pi$ qubit phenomenology and propose a novel perspective on single-qubit gates realization, based on adiabatic time evolution by taking advantage of its remarkable symmetry properties.

References

- Iñigo L. Eguskiza, Ainhoa Iñiguez, Enrique Rico et al., Physical Review B 105, L201104 (May 2022)
- [2] András Gyenis, Agustin Di Paolo, Jens Koch et al., PRX Quantum 2, 030101 (September 2021)
- Peter Groszkowski, Agustin Di Paolo, Arne L. Grimsmo et al., New Journal of Physics 20, 043053 (April 2018)
- [4] Peter Brooks, Alexei Kitaev and John Preskill, Physical Review A 87, 052306 (May 2013)

Figures

Figure 2: Schematic view of the logical qubit gate trajectory in the ground state surface for the $0-\pi$ qubit Hamiltonian