Frequency tunable single Er ions as telcom quantum emitters

Figures

Yong Yu

Dorian Oser, Gaia da Prato, Emanuele Urbinati, Sara Marzban, Wolfgang Tittel and Simon Groeblacher

Delft University of Technology, Delft, The Netherlands

y.yu-7@tudelft.nl

During the past decade, rare-earth ions doped in crystals have emerged as promising candidates for optical quantum memories, owing to their long optical and spin coherence time [1].

Recently, advancements in high-quality factor and low-mode volume nanophotonic cavities have made individual rare-earth ions optically addressable [2, 3]. Furthermore, deterministic gubit detection [4] and nuclear spin control [5] have been achieved, marking a full-stack quantum node. Among all rare-earth ions, Erbium (Er) ions are of great interest in large-scale quantum networks due to their telecom light-matter interface.

In my talk, I will present our results on coupling single Er ions in a lithium niobate host with silicon nanophotonic cavities. Additionally, we have achieved linear Stark tuning of a single Er ion frequency for the first time, which is a crucial element in establishing a multi-node quantum network.

References

- [1] De Riedmatten H, et al., Nature 456.7223 (2008): 773-777.
- Zhong, T., et al., Physical review letters, [2] 2018, 121(18): 183603.
- [3] Dibos, A., et al., 2018, Physical review letters 120.24 (2018): 243601
- [4] Kindem J M, et al. Nature 580.7802 (2020): 201-204
- Ruskuc, A., et al. Nature 602.7897 [5] (2022): 408-413.

Time (h)

Figure 1: Silicon nanocavities on the Er:LiNbO3.

0.025

0.020

0.015

0.010

0.005

PL rate

40

QUANTUMatter2023