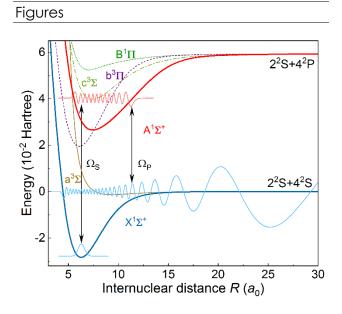
Highly Efficient Creation of Ultracold Ground-state ⁶Li-⁴⁰K Polar Molecules

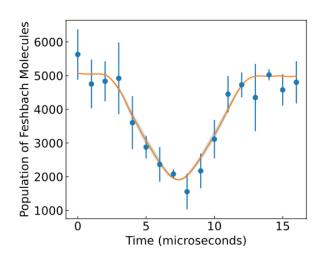
Anbang Yang

Canming He, Xiaoyu Nie, Victor Avalos, Sofia Botsi, Sunil Kumar and Kai Dieckmann

Centre for Quantum Technologies, National University of Singapore. 3 Science Drive 2, S15 #01-08, Singapore 117543, Singapore


anbangy@nus.edu.sg

Abstract


We report on the first and efficient creation of ground state ⁶Li-⁴⁰K molecules using the stimulated Raman adiabatic passage (STIRAP) [1]. Starting from the weakly-bound Feshbach molecules, the STIRAP transfer to the singlet ro-vibrational ground state is achieved via an intermediate state in the $A^{1}\Sigma^{+}$ potential [2]. The coherent transfer is facilitated by two narrow-linewidth and low phase-noise lasers. We achieved a singletrip transfer efficiency of 98(2) %, which is the highest compared to other reported bi-alkali species [3]. Our work demonstrates the high efficiency of the singlet STIRAP pathway for the coherent creation of ground state molecules. Combined with the high dipole moment of ground state ⁶Li-⁴⁰K, this work paves the way for studying quantum chemistry, quantum simulation of exotic phase of matter and quantum information processing with strong long-rage anisotropic interactions [4-6].

References

- [1] U. Gaubatz et al., Journal of Chemical Physics, 92 (1990) 5363
- [2] A. Yang et al., Physical Review Letters, 124 (2020) 133203
- [3] R. Bause et al., Physical Review A, 4 (2021) 043321
- [4] M. Hu et al, Science, 6460 (2019) 1111-1115
- [5] P. Gregory et al., Nature Physics, 10 (2021) 1149-1153
- [6] J. Li et al., Nature, 7949 (2023) 70-74

Figure 1: Adiabatic potential curves for ⁶Li-⁴⁰K molecules. The singlet pathway connects the X¹Σ⁺ ground state to the Feshbach state near the ground state asymptote via the A¹Σ⁺ potential. The Rabi frequencies of the two coupling laser fields, Pump and Stokes, are indicated by Ω_P and Ω_S .

Figure 2: Round-trip trip STIRAP transfer. The single-trip STIRAP duration is 8 µs. The number of Feshbach molecules are detected by absorptive imaging. The detection background is caused by the un-associated Li atoms. Each data point is an average of 4 measurements. From a fit to a model based on the optical Bloch equations, we infer a single-trip STIRAP efficiency of 98(2) %.

QUANTUMatter2023