Quantum networking with silicon-vacancy centers in diamond

Madison Sutula¹

Can Knaut¹, Daniel Assumpcao², Yan Qi Huan¹, Pieter-Jan Stas¹, Yan-Cheng Wei¹, Erik Knall², Aziza Suleymanzade¹, Bartholomeus Machielse³, David Levonian³, Denis Sukachev³, Mihir Bhaskar³, Marko Loncar², Hongkun Park⁴, Mikhail Lukin¹

¹Physics Department, Harvard University, Cambridge, MA 02138, USA

²John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA

³AWS Center for Quantum Networking, Boston, MA 02210, USA

⁴Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA

msutula@g.harvard.edu

Silicon-vacancy centers in diamond (SiVs) are a promising platform for quantum information applications¹. In particular, SiVs containing the ²⁹Si-isotope are well suited for use in quantum networks: they serve as an integrated two-gubit register with universal one- and two-qubit gates, a long-lived nuclear spin memory, and high-fidelity singleshot readout². We achieve an efficient spinphoton interface by integrating SiVs into overcoupled nanophotonic cavities³ and efficiently extracting photons with a tapered optical fiber. Here, we will discuss the operation of individual ²⁹SiV quantum memories, demonstrating heralded spinphoton gates to generate electron-photon nuclear-photon Bell states and with integrated error detection. We will then show that the platform is extensible to multi-node operation: we realize a quantum link and demonstrate entanglement between two independent nodes each containing a single SiV that are spatially separated by 20 meters. These results demonstrate the potential for large-scale quantum networking and quantum repeaters based on SiVs in diamond.

References

- [1] M. Bhaskar et al., Nature, 580 (2020), 60-64
- [2] P.J. Stas et al., Science, 378 (2022), 557-560
- [3] E. Knall et al., Phys. Rev. Lett. 129 (2022), 053603

Figures

Figure 1: a) Silicon-vacancy center (SiV) energy spectrum. b) SEM micrograph of nanophotonic diamond cavity. c) Reflection spectrum of SiV-cavity system. d) Crystallographic structure of the SiV.

Figure 2: Schematic illustrating two-node quantum networking with silicon-vacancy centers in diamond.