Topological superconductivity in a Josephson junction mediated by magnetic domains

Ignacio Sardinero

Rubén Seoane Souto, Pablo Burset
Department of Theoretical Condensed Matter Physics, Condensed Matter Physics Center (IFIMAC) and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, 28049 Madrid, Spain
ignacio.sardinero@uam.es
Topological superconductors are appealing building blocks for robust and reliable quantum information processing [1]. Most platforms for engineering topological superconductivity rely on a combination of materials with intrinsic spin-orbit coupling and external magnetic fields, which are usually challenging to manipulate [2]. We propose and describe a setup (Fig. 1) without spin-orbit or magnetic fields where a conventional Josephson junction is linked by a narrow ferromagnetic insulator barrier with multi-domain structure [3]. Sequences of magnetic domains that preserve the net magnetization's rotation direction are sufficient for generating topological

Figure 1: Superconductors L and R are separated by a ferromagnetic insulator barrier, so that the hopping between them is spin dependent. The magnetization direction of the insulating barrier changes in space, as depicted by the arrows, akin to a magnetic domain wall.
superconductivity in a wide range of parameters and degrees of disorder. The topological phase transition depends on the magnitude and rotation period of the net magnetization. Interestingly, a phase bias ϕ across the junction can control the localization of a pair of Majorana zeroenergy modes (MZMs) at the edges of the junction interface, with an observable effect on the current-phase relation (Fig. 2).

Figure 2: Localizing edge modes by phase biasing the junction. (a) Energy bands showing the gap reopening and MZMs at finite ϕ. (b) Local density of states (a.u.) at $E=0$ vs junction width, showing the localization of a pair of topological edge states. (c) Current-phase relation for the parameters used on the left. Increasing the magnetization strength facilitates the topological phase transition.

References
[1] S. Das Sarma, M. Freedman, C. Nayak, NPJ Quantum Information 1, 15001 (2015).
[2] Y. Oreg, G. Refael, F. von Oppen, Phys. Rev. Lett. 105, 077001 (2010).
[3] I. Sardinero, R. Seoane Souto, P. Burset, in preparation.

