Photon counting statistics in NV centers

Iván Panadero1,2,3*, Hilario Espinós2, Ander Tobalina1, Jorge Casanova3,4,5, Pablo Acedo6, Boris Naydenov7, Ricardo Puebla2, Erik Torrontegui2

1 Arquimea Research Center, Camino las Mantecas s/n, 38320 Santa Cruz de Tenerife, Spain
2 Departament of Physics, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
3 Department of Physical Chemistry, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
4 EHU Quantum Center, University of the Basque Country, 48940 Leioa, Spain
5 IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
6 Department of Electronic Technology, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
7 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany

ipanadero@arquimea.com

Abstract

We model and experimentally benchmark the full counting statistics of photons emitted by a single nitrogen vacancy center in diamond within the context of a quantum jump formalism. This formulation allows for the study of fluorescence under non-resonant laser excitation and resonant micro-wave (MW) control. We build a phenomenological framework which relates the relevant physical parameters with the detected photon counts. Furthermore, we can investigate the time correlations of the emitted photons and elaborate detection protocols to optimize the energy and time resources while maximizing the system sensitivity of magnetic-field measurements.

References


Figures

Figure 1: Probability P(n,t) of emitting n photons by an NV excited by a green laser as a function of time.

Figure 2: Measured autocorrelation function (black) for an NV centre and the photon statistics prediction (red).