Towards polynomial convergence for Variational Quantum Algorithms using Langevin Dynamics

Pablo Páez Velasco

Ángela Capel, Marco Castrillón, Sofyan Iblisdir, David Pérez García, Angelo Lucia

Facultad de Ciencias Matemáticas, UCM, Plaza de las ciencias, 3, Madrid, Spain

pablpaez@ucm.es

One of the most promising types of algorithms to run on noisy intermediate-scale quantum computers are variational optimization algorithms [4]. In those algorithms one deals with a parametrized quantum circuit whose outputs are then a parametrized family \mathcal{F} of n-particle quantum states.

Given an n-body observable H, that can be efficiently implemented (e.g. a locally interacting Hamiltonian), the goal is to obtain an approximation of

$$\min_{|\psi\rangle\in\mathcal{F}}F(|\psi\rangle) = \langle\psi|\mathbf{H}|\psi\rangle. \tag{1}$$

The goal of this paper is to study the continuous Langevin Dynamics (see [1, 2]) in a rather general setting, shown in Figure 2. Proving convergence results in such a setting may potentially lead to poly-time algorithms to solve (1) on depth-2 quantum circuits with gates acting on $\log L$ sites, with L being the system size (Figure 1). Moreover, our results should be applicable to other circuits, under certain assumptions on

$$F(|\psi\rangle) = \langle \psi | \mathbf{H} | \psi \rangle$$

We generalize [3] to the Lie Group SU(n); we prove that for any values $\varepsilon, \delta \in (0, 1)$, for

$$\beta \geq \Omega \left(\frac{d^2 \log d}{\varepsilon} - \frac{\log \delta}{\varepsilon} \right)$$

we get that the Gibbs distribution $\boldsymbol{\nu}$ associated to our Markov process satisfies

$$\nu(F - \min_{y \in SU(n)^{\times r}} F(y) \ge \varepsilon) \le \delta$$

Furthermore, we prove that our setting satisfies a logarithmic Sobolev Inequality, which guarantees exponential convergence of the process Z_t to v (see [1]).

References

- D. Bakry, I. Gentil, and M. Ledoux, Springer International Publishing, (2013).
- [2] E.P. Hsu, American Mathematical Soc. (2002).
- [3] M.B. Li, and M.A. Erdogdu, arXiv:2010.11176, (2020).
- [4] J.R. McClean, J. Romero R. Babbush, and A. Aspuru-Guzik, New Journal of Physics, 18 (2016) 023023.

Figures

Figure 1: General Variational Quantum Algorithm Scheme.

$$\min_{x \in SU(n)^{\times r}} F(x), \quad F: SU(n)^{\times r} \to \mathbb{R} \text{ non-convex},$$

$$dZ_t = -gradF(Z_t)\,dt + \sqrt{rac{2}{eta}}\,dW_t.$$

Figure 2: Langevin Dynamics proposed to find the minimum of *F*.

QUANTUMatter2023