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Abstract  

 

In this article[1], we consider a theoretical 

model for a type I Weyl semimetal, under 

the presence of a diluted uniform 

concentration of torsional dislocations. By a 

mathematical analysis for partial wave 

scattering (phase- shift) for the T-matrix[2,3], 

we obtain the corresponding retarded and 

advanced Green’s functions that include 

the effects of multiple scattering events with 

the ensemble of randomly distributed 

dislocations[1]. Combining this analysis with 

the Kubo formalism, and including vertex 

corrections[1], we calculate the electronic 

conductivity as a function of temperature 

and concentration of dislocations. We 

further evaluate our analytical formulas to 

predict the transport coefficients (electrical 

conductivity, thermal conductivity and 

Seebeck) of several transition metal 

monopnictides, i.e. TaAs, TaP, NbAs and 

NbP.  
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nian, whereas the expression in Eq. (3) represents the interac-
tion with the dislocation, where torsional strain is described
asapseudo-magnetic field inside thecylinder[21–23], aswell
as the lattice mismatch e↵ect at the boundary of the disloca-
tion, modeled asrepulsivedeltabarrier on itssurface[22]. The

FIG. 1. Pictorial description of the scattering of free incident Weyl

fermions coming from aleft reservoir by asinglecylindrical disloca-
tion defect.

” free” spinor eigenfunctions for the defect-free reference sys-
tem satisfy
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where the energy spectrum is given by

E
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λ,k

= λ⇠~vF |k|, (5)

and λ = ±1 is the band (helicity) index. When projected onto
coordinatespace, thesespinor eigenfunctions havetheexplicit
form
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and constitute an orthonormal basis for the Hilbert space.

If we now consider the (elastic) scattering e↵ects induced
by the torsional dislocation modeled by Eq. (3), we need to
look for the eigenvectors  λ,k

↵
of the total Hamiltonian in

Eq. (1) with the same energy as in Eq. (5). The answer is pro-
vided by thesolution to thewell known Lippmann-Schwinger
equation
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, (7)

where the free Green’s function can be expressed in a
coordinate-independent representation form via the resolvent,
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Here, the index R/A stands for retarded and advanced, re-
spectively. As shown in detail in the Appendix A, in the co-
ordinate representation the corresponding free Green’s func-

tion is given by the explicit matrix form G
⇠
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(r , r0; k) =

δ(z− z0)G
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(x, x0; k), where r = (x,z) and
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Here, H
(1)

0
(z) and H

(1)

1
(z) are the Hankel functions and x =

(x,y) is the position vector on any plane perpendicular to the
cylinder’s axis.

For the scattering analysis, we need the retarded resolvent
for the full Hamiltonian, which is defined as the solution to
the equation

⇣
E + i⌘+ − Ĥ⇠

⌘
Ĝ
⇠
R
(E) = Î . (10)

Combining Eq. (10) with Eq. (8), we readily obtain

FIG. 2. Pictorial description of the scattering event on a plane per-
pendicular to the cylindrical defect axis.
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where we introduced the standard definition of the T-matrix
operator T̂⇠(E), that can be formally expressed in closed form
by
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Using this definition, along with the property Ĥ
⇠
1
| k,λ i =

T̂⇠|Φk,λ i , we obtain the Lippmann-Schwinger Eq. (7) in the
coordinate representation
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Figure 1: Scattering of Weyl fermions by a single 

torsional dislocation  
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As shown in detail in Appendix B, by considering the

asymptotic behavior of the Hankel functions, H
(1)
⌫ (x) ⇠q

2
⇡x

ei(x− ⌫⇡
2
− ⇡

4 ) (for x ! 1 .), Eq. (13) can be reduced to the

x-y plane and takes the explicit asymptotic expression
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where as we explain in the Appendix, the particles have only
momenta perpendicular to thedefect’s axis, i.e., kk = (kx,ky).
Comparing this last result with our previous reported expres-
sion for the scattering amplitude [27]
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we identify T
(λ,⇠)
k0k

= −2λ⇠~vF

p
⇡/ ik f1(φ). Therefore, we ar-

rived at an explicit analytical expression for the T-matrix ele-
ments in terms of the phase shift δm(k) for each angular mo-
mentum channel m 2 Z

T
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kkk
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where φ is the angle between kk and k0
k, and the analyti-

cal expression for the phase shift is given in Appendix B by
Eq. (B12).

I I I . SCATTERING BY A UNIFORM CONCENTRATION
OF DISLOCATIONS

FIG. 3. Random distribution of torsional dislocations seen from a
plane perpendicular to the cylinders axis.

Let us now consider a uniform concentration nd = Nd/A
(per unit transverse surface) of identical cylindrical disloca-
tions, as depicted in FIG. 3, represented by the density func-
tion

⇢(x) =

NdX

j=1

δ(x − X j), (17)

where X j is the position of the j-defect’s axis. The Fourier
transform of this density function is thus given by the expres-
sion
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The operator that plays the role of a scattering potential for
this distribution of dislocation defects is
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whereH
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1

isdefined in Eq. (3) asthecontribution from asingle
dislocation. The matrix elements of the scattering operator
Eq. (19) in the free spinor basisdefined by Eq. (4) are
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where Ṽ(kk) is the Fourier transform
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Then, the matrix elements of the potential in Eq. (20) become
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Let us also introduce the configurational average of some
quantity f (X j) over the distributed dislocations as

hf i =

Z

R2

d2X j P(X j) f (X j), (23)

where P(X j) is the normalized distribution function for the
defects in the sample. In particular, for a uniform distribution
wehave P(X j) = 1/A, where A is theareaof theplane normal
to each cylinder’s axis. Now, the full retarded Green’s func-
tion satisfies for the potential of several dislocations V̂ given
in Eq. (19) is
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The configurational average, as defined in Eq. (23), of the
complete Green’s function in this last equation can be writ-
ten as
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This is the Dyson’s equation with the retarded self-energy
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Figure 2: Random distribution of torsional 

dislocations in a bulk Weyl semimetal (as seen 

from a plane perpendicular to the dislocation´s 

axis) 

 

 

 

 

 

 

 

 


