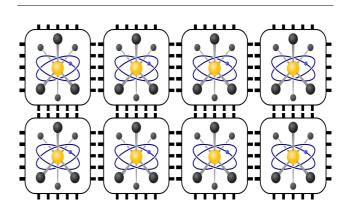
Toward High Fidelity Quantum Networks - Silicon Vacancy Centers in Diamond

Donika Imeri

Tuncay Ulas, Sunil Kumar Mahato, Rikhav Shah, Ralf Riedinger

Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany


dimeri@physnet.uni-hamburg.de

Quantum networks combine high security with the ability to scale up the number of gubits, which is essential for large-scale quantum information processing. These networks have nodes that store quantum data. Entanalement can be used to connect these nodes and enable quantum communication. Silicon-vacancy (SiV) color centers in diamond are promising components of optically coupled quantum processors. These solid-state emitters provide an effective optical interface and exhibit protective inversion symmetry. As a result, it feasible to incorporate them into is nanophotonic structures. The entanglement between spin- and photonic qubits can be generated using this approach. Coherent interactions between nuclear spins and the SiV require ultra-low temperatures and strong currents that simultaneously generate radio-frequency fields. Here we present a platform integrating superconducting coils with nanophotonic structures for operation at millikelvin temperatures.

References

- C. T. Nguyen et al., "Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface ". Phys. Rev. Lett. 123, 183602 (2019).
- [2] M.K. Bhaskar et al., "Experimental demonstration of memoryenhanced quantum communication". Nature 580, 60–64 (2020).
- [3] P.-J. Stas et al., "Robust multi-qubit quantum network node with integrated error detection" Science 378, 557 (2022).

Figures

Figure 1: Schematic of a quantum network with SiV-centers as nodes. Connecting the color centers are photons distributing the entanglement.