Exciton transport in a germanium 4x2 ladder quantum dot array

Tzu-Kan Hsiao¹

P. Cova Fariña¹, D. Jirovec¹, X. Zhang¹, C. J. van Diepen¹, S. D. Oosterhout^{1,2}, W. I. L. Lawrie¹, C.-A. Wang¹, A. Sammak^{1,2}, G. Scappucci¹, M. Veldhorst¹ and L. M. K. Vandersypen¹

¹QuTech and Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft, The Netherlands

²Netherlands Organisation for Applied Scientific Research (TNO), 2628 CK Delft, The Netherlands

tkhsiao@phys.nthu.edu.tw

engineered Quantum systems with Hamiltonians can be used as quantum simulators of many-body systems to provide insights beyond the capabilities of classical computers [1]. Semiconductor gate-defined quantum dot arrays, owing to their in-situ tunability, are an ideal platform for quantum simulation [2]. Furthermore, the naturallyoccurring long-range Coulomb interaction offers unique opportunities for exploring excitonic phenomena such as Wigner crystals [3] and excitonic insulators [4]. In this work, we fabricate a germanium 4x2 ladder quantum dot array and show important ingredients for excitonic simulation such as well-controlled chemical potentials and tunnel couplings as well as strong interchannel Coulomb interaction. We tune the capacitively-coupled array into two channels and exploit Coulomb drag as a probe for exciton formation. As we decrease the bottom-channel potential while propagating carriers through the top channel using voltage pulses, a transition from single electron transport to exciton transport is observed. Our work paves the way to study excitonic state of matters in quantum dot arrays.

References

[1] J. I. Cirac and P. Zoller, Nature Physics, 8 (2012), 264.

[2] T. Hensgens, T. Fujita, L. Janssen, X. Li, C. J. Van Diepen, C. Reichl, W. Wegscheider, S. Das Sarma, and L. M. K. Vandersypen, Nature, 548 (2017) 70.

[3] E. Wigner, Physical Review, 46 (1934), 1002.

[4] D. Jerome, T. M. Rice, and W. Kohn, Physical Review, 158 (1967), 462.

Figures

Figure 1: A scanning electron microscope image of a germanium 4x2 quantum dot array with a schematic showing excitonic transport. An electron (missing of a hole) is shuttled through the top channel and a hole in the bottom channel is dragged along because of the inter-channel Coulomb interaction.

Figure 2: Coulomb drag measurement data. (a) Bottom-left and (b) bottom-right sensor signals as a function of time and energy offset of the bottom channel E_B . In the time domain from II to V an electron is shuttled in the top channel from left to right. As E_B decreases, a transition from single-electron transport (blue dashed region) to correlated electron-hole pair transport, i.e. exciton transport (orange dashed region), is observed.