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The expressivity and efficiency of tensor
networks (TNs) make them ideal tools to
develop quantum-inspired algorithms. We

revise the problem of operator
diagonalization with TNs for quantum-
inspired methods for numerical analysis

[1.2]. We use matrix product operators
(MPQO) to represent partial differential
equations (PDEs), while matrix product
states (MPS) for their solution, based on the
encoding of functions in a quantum register
[8]. We focus on: (i) imaginary-time
evolution, (i) gradient-descent, (i) linear
algebra approximate diagonalization, and
(iv) DMRG-like optimization. We implement
methods  (i)-(ii) in a framework of
approximate linear algebra, concluding
that time-evolution is costlier than simple
gradient descent. We upgrade gradient
descent to work in a Krylov basis of n,
arbitrary vectors, formulating a variant of
the Arnoldi method that outperforms (i) and
(ii). We benchmark it to DMRG and vector-
based Arnoldi using the 2D squeezed
harmonic oscillator. We find that, while
DMRG performs exponentially better in
single-shot experiments (Fig.1(a)), Arnoldi
matches it in accuracy and execution time
when using a renormalization strategy (Fig.
2) and can be generalized to MPOs of
greater depth. This shows its power to
address large scale optimization problem:s,
not only in quantum-inspired numerical
analysis, but also in other many-body and
quantum chemistry applications. MPS-
based methods present an exponential
advantage in memory when compared to
vectors (Fig. 1(b)), evidencing the benefits
of quantum-inspired methods for large
dimensional problems.
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Figure 1: Single-shot results for DMRG and
Arnoldi (MPS and vectors) for 2™ points per
dimension. (a) Relative execution fime with
respect ton = 3. (b) Memory.
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Figure 2: Time to energy error € < 1e-7 for DMRG
and Arnoldi (MPS and vectors) with
renormalization for 2™ points per dimension.
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