Sensing interactions in atomic quantum systems

Claudia Galantini

Evan Ichir Rianne S. Lous

TU/e, Groene Loper 3, Eindhoven, The Netherlands

c.galantini@tue.nl

Experiments that cool, trap, and control atoms, ions, and molecules provide a unique testbed. Hybrid ion-atom systems combine the well-controllable platforms of trapped ions and ultracold quantum gases and link them together by the intermediaterange ion-atom interaction. These quantum systems offer opportunities for buffer gas cooling, quantum simulation of many-body systems as well as for state-to-state quantum chemistry [1]. To fully benefit from the combination, it is essential to understand, characterize, and control the interactions between the atoms and ions. Therefore, at TU/e a new experimental setup is being build which combines a trapped ion - Yb+ with dipolar atoms - Dy. This poster reports on the development of its design and how it can be used to sense interactions in these atomic quantum systems.

References

 R.S. Lous and R. Gerritsma, AAMOP, 71 (2022) 65-133

Figures

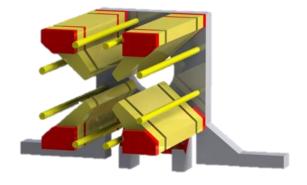


Figure 1: CAD drawing of the ion trap design.