Ulira-bright single photon source based on an
atomically thin material
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Solid-state single photon sources are
cenfral  building blocks in quantum
communication networks and on-chip
quantum information  processing  [1].
Atomically thin crystals were established as
possible candidates to emit non-classical
states of light [2,3]., however, the
performance of monolayer-based single
photon sources has so far been lacking
behind state-of-the-art devices based on
volume crystals. Here, we implement a
single photon source based on an
atomically thin sheet of WSe2 coupled to a
spectrally tunable optical cavity [4]. It is
characterized by a high single photon
purity with a g@(0) value as low as 4.7 + 0.7
% and a record-high first lens brightness of
linearly polarized photons as large as 65 *+ 4
%. Interestingly, the high performance of
our devices allows us to observe genuine
quantum interference phenomena in a
Hong-Ou-Mandel experiment.

Our results demonstrate that open cavities
and two-dimensional materials constitute

an excellent platform  for ultra-bright
quantum  light sources: the unique
properties of such  two-dimensional
materials and the versatility of open cavities
open an inspiring avenue for novel

quantum optoelectronic devices.
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Figure 1: a Single photon emission from a
monolayer in a plano-convex open cavity
under optical excitation. The relative position of
the tfop and bottom mirror is adjustable by
nano-positioners. b Photoluminescence spectra
upon funing the cavity optical length for
above-bandgap excitation at 532 nm. Cavity
modes are highlighted by dashed lines. ¢
Second order autocorrelation function of single
photons measured in a Hanbury-Brown-Twiss
experiment with 76.2 MHz pulsed excitation.
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