Ultra-bright single photon source based on an atomically thin material

M. Esmann¹

J.C. Drawer¹, V.N. Mitryakhin¹, H. Shan¹, S. Stephan^{1,2}, M. Gittinger¹, L. Lackner¹, B. Han¹, G. Leibeling³ F. Eilenberger³, R. Banerjee⁴, S. Tongay⁴, K. Watanabe⁵, T. Taniguchi⁵, C. Lienau¹, M. Silies², C. Anton-Solanas⁶, C. Schneider¹

¹ Institute of Physics, Carl von Ossietzky University, Oldenburg, Germany

²Hochschule Emden/Leer, Emden, Germany

³ Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University, Jena, Jena, Germany

⁴ Materials Science and Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA

⁵ National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

⁶Depto. de Física de Materiales, Instituto Nicolás Cabrera, Instituto de Física de la Materia Condensada, Universidad Autónoma de Madrid, Spain

m.esmann@uni-oldenburg.de

Solid-state single photon sources are central building blocks quantum in communication networks and on-chip auantum information processing [1]. Atomically thin crystals were established as possible candidates to emit non-classical states of light [2,3], however, the performance of monolayer-based single photon sources has so far been lacking behind state-of-the-art devices based on volume crystals. Here, we implement a photon source based on an single atomically thin sheet of WSe₂ coupled to a spectrally tunable optical cavity [4]. It is characterized by a high single photon purity with a $g^{(2)}(0)$ value as low as 4.7 ± 0.7 % and a record-high first lens brightness of linearly polarized photons as large as 65 ± 4 %. Interestingly, the high performance of our devices allows us to observe aenuine quantum interference phenomena in a Hong-Ou-Mandel experiment.

Our results demonstrate that open cavities and two-dimensional materials constitute

excellent platform for ultra-bright an liaht the unique auantum sources: properties of such two-dimensional materials and the versatility of open cavities open an inspiring avenue for novel quantum optoelectronic devices.

Figure 1: a Single photon emission from a monolayer in a plano-convex open cavity under optical excitation. The relative position of the top and bottom mirror is adjustable by nano-positioners. b Photoluminescence spectra upon tuning the cavity optical length for above-bandgap excitation at 532 nm. Cavity modes are highlighted by dashed lines. c Second order autocorrelation function of single photons measured in a Hanbury-Brown-Twiss experiment with 76.2 MHz pulsed excitation.

References

- Aharonovich, I., Englund, D. & Toth, M., Nat. Photonics **10**, 631–641 (2016).
- [2] Azzam, S. I., Parto, K. & Moody, G., Appl. Phys. Lett. **118**, 240502 (2021).
- [3] Turunen, M. et al. Nat. Rev. Phys. 4, 219-236 (2022).
- [4] Drawer, J.C. et al. arXiv:2302.06340 (2023).

QUANTUMatter2023