Temperature dependent Ga₂O₃ refractive index for nanowire-based thermometers

Daniel Carrasco¹

Manuel Alonso-Orts^{1,2}, Eva Nieto³, Rosalía Serna³, José María San Juan⁴, María Luisa Nó⁴, Alicia de Andrés⁵, Jani Jesenovec⁶, John S. McCloy⁶, Emilio Nogales¹ and Bianchi Méndez¹

¹ Dpto. Física de Materiales, Fac. CC Físicas, UCM, Madrid 28040, Spain

² Inst. Solid State Physics, UB, Otto-Hahn-Allee 1, 28359 Bremen, Germany

³ Inst. de Óptica, CSIC, Serrano 121, 28006 Madrid, Spain

⁴ Dpto. Física, Fac. de Ciencias y Tecnología, UPV-EHU, Apdo. 644, Bilbao 48080, Spain

⁵ Inst. de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, Madrid 28049, Spain

⁶ Inst. of Materials Research, Crystals and Semiconductors Group, WSU, Pullman WA 99164, USA

Contact email: daniecar@ucm.es

Gallium oxide is currently attracting great interest on the semiconductor field as it is a transparent conductive oxide (TCO) with an ultra-wide bandgap (~ 4.8 eV), high thermal and chemical stability and it can be doped with different rare earths ions, making it a very suitable material for high power electronics and photonics applications [1].

In this work, we present our recent results designing, optimizing, characterizing, and applying optical microcavities based on a pair of distributed Bragg reflectors (DBR) patterned by focused ion beam in the waveguiding β -Ga₂O₃:Cr nanowires, which results in widely tunable Fabry-Perot (FP) optical resonances enhanced by the great photonic properties of Cr³⁺ ions, and their use as wide dynamical range temperature sensor (at least from 150 K to 550 K, with a precision around 1 K) based on the thermal position shift of the characteristic R-lines of Cr³⁺ and the FP resonances observed by local photoluminescence [2]. This study has been carried out both experimentally and

finite-different time-domain with (FDTD) simulations. Also, the monoclinic crystal structure of Ga₂O₃ results in an anisotropic refractive index, making it necessary a detailed analysis to fully understand the optical behaviour and its temperature By ellipsometry, we have dependence. own measurements obtained our of temperature dependent refractive index of a bulk monocrystalline B-Ga₂O₃ and discuss the validity with another previous work [3] and by using an interferometry method.

References

- S. J. Pearton J. Yang, P. H. Cary IV, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev. 5 (2018) 011301.
- [2] M. Alonso-Orts, D. Carrasco, J. M. San Juan, M. L. Nó, A. de Andrés, E. Nogales, B. Méndez, Small 18 (2022) 2105355
- [3] C. Sturm, R. Schmidt-Grund, V.Zviagin, and M. Grundmann, Appl. Phys. Lett. 111, 082102 (2017)

Figures

Figure 1: (a) Optical cavity created in a β -Ga₂O₃:Cr nanowire, (b) Room temperature local micro-photoluminescence spectrum, (c) FP peak positions shift with temperature.

QUANTUMatter2023