A microwave photomultiplier based on inelastic Cooper pair

Joël Griesmar

Romain Albert, Florian Blanchet, Ataellah Youcef Bioud, Ulrich Martel, Max Hofheinz

Institut Quantique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada

joel.griesmar@polytechnique.edu

The detection of single photons is a fundamental auantum measurement, complementary to linear amplification. However, in the microwave domain this is a difficult task due to the low energy of the photons. We present here a photo-multiplier using the energy of a Cooper pair tunneling across a voltage-biased Josephson junction to convert one microwave photon into several photons at a different frequency. This process relies on the strong non-linearity provided by the interaction between a Josephson junction and its high-impedance electromagnetic environment. We have fabricated and measured device a composed of a low critical current SQUID galvanically coupled to two hiahimpedance resonators visible in Figure 1. It showed almost perfect conversion from one to one and two photons as well as a threefold multiplication with 0.75 efficiency in a 125 MHz bandwidth as shown in Figure 2. By cascading two of these multiplication stages and adding a quantum limited possible amplifier, should it be to discriminate itinerant single photon states from vacuum without dead time [1].

References

 J. Leppäkangas, M. Marthaler, D. Hazra, S. Jebari, R. Albert, F. Blanchet, G. Johansson, M. Hofheinz, Physical Review A, 97 (2018) 013855

Figure 1: photon-number Microwave Simplified amplification. (a) electrical schematic. The sample consists of two buffer resonators at frequencies ω_{α} and ω_{b} . They are non-linearly coupled by a SQUID biased at a voltage V via a heavily filtered bias line. Blue input photons are sent on the left-hand microwave transmission line. Thev are transformed into green photons in the output line. (b) Voltage V is set such that $2eV+\hbar\omega_a = 3$ ωb.

