Robust entangling gate for capacitively coupled
few-electron singlet-triplet qubits
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noise and hyperfine noise, two-qubit
operation at the proposed sweet spot could
offer gate fidelities (~99%) that are higher
than conventional two-electron singlet-
triplet qubit system (~90%)
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Singlet-triplet (STo) qubits remain one of the
leading candidates to host quantum
computing devices in semiconductor
quantum dofs. Relative to single-spin
qubits, STo qubits feature fast operations,
suppressed  power dissipation, simplified
control systems, and high-fidelity readout.
Conventionally, STo qubits are realized in two
singly-occupied tunnel-coupled dofts (“two-
electron STo qubit”). Such setup for STo qubits
is limited from performing high-fidelity
capacitive gates as dipoles are infroduced
during the two-qubit operations. Therefore,
searching a two-qubit sweet spot, locus in
qubit parameters where quantum conftrol is
first-order insensitive to charge noises, is key
to achieve robust entangling gates in this
system.

Recent experiments have demonstrated,
when a singly-occupied quantum dot is
coupled to a multielectron dof, that
exchange energies can depend non-
monotonically on the detuning, the conftrol
parameter [1,2]. Inspired by these works, we
consider STo qubits allowing each dot to host
more than one electron, with a total of four
electrons in the double quantum dots (“four-
electron STo qubit”). We theoretically
demonstrate, using configuration-interaction
calculations, that sweet spots appear in this
coupled qubit system. We  further
demonstrate that, under realistic charge
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Figure 1: Schematic illustration of a double double-
quantum-dot (DQD) device, where DQD-L and -R
denote left and right DQD respectively, with x =0

being the boundary between them.
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Figure 2: (a, b) Effective exchange energies and (c)
capacitive coupling as functions of detunings (d)
Insensitivity v.s. symmetric detunings on two DQDs

QUANTUMatter2022



