GRAPHENE & 2DM INTERNATIONAL CONFERENCE
NOVEMBER 02-05, 2021
VIRTUAL graphene 2021

Graphene functionalization with SARS-CoV-2 antibodies
Sofiya Zorina, Víctor Jesús Gómez Hernández, Alejandro José Martínez Abiétar & Elena Pinilla Cienfuegos*

Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.

ABSTRACT

Current situation of COVID-19 demands a rapid, reliable, cost-effective, facile detection strategy to break the transmission chain and biosensors have emerged as a feasible solution for this purpose. Among the various types of biosensors, photonic biosensors allow real-time detection of infinitesimal quantities (even isolated molecules) of a great variety of biochemical substances, since they measure instantaneous changes in the optical properties of matter. Generally, photonic biosensors are composed by two parts: the photonic part, which is responsible for transducing a biochemical change into a change in the optical response; and the chemical part, a molecular recognition element that ensures that only the targeted analyte adheres to the biosensor and provokes the optical change. In this context, graphene has demonstrated its potential in the rapid detection of SARS-CoV-2 by its integration in a FET-based biosensor [1]. In this work we have developed a faster, less toxic, and a cost-effective functionalization of graphene with PBASE (~1-pyrenemethylic acid-N-hydroxysuccinimide ester), which is a key molecule to immobilize SARS-CoV-2 spike antibodies onto graphene surface (Figure 1a). The PBASE functionalization as well as the SARS-CoV-2 antibody immobilization has been probed in graphene layers and flakes prepared by means of plasma enhanced chemical vapor deposition and the scotch-tape method. Atomic force microscopy together with Raman spectroscopy confirm all the functionalization steps.

REFERENCES


CONTACT PERSON
Email: epinilla@ntc.upv.es
NANOPHOTONICS TECHNOLOGY CENTER

ACKNOWLEDGMENTS

Subprograma para el desarrollo de Proyectos de Innovación UPV/EHU, IÑAMO, IDATORECOV (Grant AIP2010-33).

VIRTUAL graphene 2021